OpenCompass/opencompass/utils/run.py
so2liu 267401bded
[Feat] add custom summarizer argument in CLI run mode 在CLI启动模式中添加自定义Summarizer参数 (#411)
* feat: add custom summarizer in CLI run mode

* feat: search local config by match_cfg_file
2023-09-18 18:11:22 +08:00

189 lines
7.9 KiB
Python

from typing import List, Union
import tabulate
from mmengine.config import Config
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
from opencompass.utils import get_logger, match_files
def match_cfg_file(workdir: str, pattern: Union[str, List[str]]) -> List[str]:
"""Match the config file in workdir recursively given the pattern.
Additionally, if the pattern itself points to an existing file, it will be
directly returned.
"""
if isinstance(pattern, str):
pattern = [pattern]
pattern = [p + '.py' if not p.endswith('.py') else p for p in pattern]
files = match_files(workdir, pattern, fuzzy=False)
if len(files) != len(pattern):
nomatched = []
ambiguous = []
err_msg = ('The provided pattern matches 0 or more than one '
'config. Please verify your pattern and try again. '
'You may use tools/list_configs.py to list or '
'locate the configurations.\n')
for p in pattern:
files = match_files(workdir, p, fuzzy=False)
if len(files) == 0:
nomatched.append([p[:-3]])
elif len(files) > 1:
ambiguous.append([p[:-3], '\n'.join(f[1] for f in files)])
if nomatched:
table = [['Not matched patterns'], *nomatched]
err_msg += tabulate.tabulate(table,
headers='firstrow',
tablefmt='psql')
if ambiguous:
table = [['Ambiguous patterns', 'Matched files'], *ambiguous]
err_msg += tabulate.tabulate(table,
headers='firstrow',
tablefmt='psql')
raise ValueError(err_msg)
return files
def get_config_from_arg(args) -> Config:
"""Get the config object given args.
Only a few argument combinations are accepted (priority from high to low)
1. args.config
2. args.models and args.datasets
3. Huggingface parameter groups and args.datasets
"""
if args.config:
return Config.fromfile(args.config, format_python_code=False)
if args.datasets is None:
raise ValueError('You must specify "--datasets" if you do not specify '
'a config file path.')
datasets = []
for dataset in match_cfg_file('configs/datasets/', args.datasets):
get_logger().info(f'Loading {dataset[0]}: {dataset[1]}')
cfg = Config.fromfile(dataset[1])
for k in cfg.keys():
if k.endswith('_datasets'):
datasets += cfg[k]
if not args.models and not args.hf_path:
raise ValueError('You must specify a config file path, '
'or specify --models and --datasets, or '
'specify HuggingFace model parameters and '
'--datasets.')
models = []
if args.models:
for model in match_cfg_file('configs/models/', args.models):
get_logger().info(f'Loading {model[0]}: {model[1]}')
cfg = Config.fromfile(model[1])
if 'models' not in cfg:
raise ValueError(
f'Config file {model[1]} does not contain "models" field')
models += cfg['models']
else:
from opencompass.models import HuggingFace
model = dict(type=f'{HuggingFace.__module__}.{HuggingFace.__name__}',
path=args.hf_path,
peft_path=args.peft_path,
tokenizer_path=args.tokenizer_path,
model_kwargs=args.model_kwargs,
tokenizer_kwargs=args.tokenizer_kwargs,
max_seq_len=args.max_seq_len,
max_out_len=args.max_out_len,
batch_padding=not args.no_batch_padding,
batch_size=args.batch_size,
pad_token_id=args.pad_token_id,
run_cfg=dict(num_gpus=args.num_gpus))
models.append(model)
summarizer = None
if args.summarizer:
s = match_cfg_file('configs/summarizers/', [args.summarizer])[0]
get_logger().info(f'Loading {s[0]}: {s[1]}')
cfg = Config.fromfile(s[1])
summarizer = cfg['summarizer']
return Config(dict(models=models, datasets=datasets, summarizer=summarizer),
format_python_code=False)
def exec_mm_infer_runner(tasks, args, cfg):
"""execute multimodal infer runner according to args."""
if args.slurm:
runner = SlurmRunner(dict(type='MultimodalInferTask'),
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
elif args.dlc:
raise NotImplementedError('Currently, we do not support evaluating \
multimodal models on dlc.')
else:
runner = LocalRunner(task=dict(type='MultimodalInferTask'),
max_num_workers=args.max_num_workers,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
runner(tasks)
def get_config_type(obj) -> str:
return f'{obj.__module__}.{obj.__name__}'
def fill_infer_cfg(cfg, args):
new_cfg = dict(infer=dict(
partitioner=dict(type=get_config_type(SizePartitioner),
max_task_size=args.max_partition_size,
gen_task_coef=args.gen_task_coef),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLInferTask)),
lark_bot_url=cfg['lark_bot_url'],
)), )
if args.slurm:
new_cfg['infer']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['infer']['runner']['partition'] = args.partition
new_cfg['infer']['runner']['quotatype'] = args.quotatype
new_cfg['infer']['runner']['qos'] = args.qos
new_cfg['infer']['runner']['retry'] = args.retry
elif args.dlc:
new_cfg['infer']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['infer']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['infer']['runner']['retry'] = args.retry
else:
new_cfg['infer']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['infer']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)
def fill_eval_cfg(cfg, args):
new_cfg = dict(
eval=dict(partitioner=dict(type=get_config_type(NaivePartitioner)),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLEvalTask)),
lark_bot_url=cfg['lark_bot_url'],
)))
if args.slurm:
new_cfg['eval']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['eval']['runner']['partition'] = args.partition
new_cfg['eval']['runner']['quotatype'] = args.quotatype
new_cfg['eval']['runner']['qos'] = args.qos
new_cfg['eval']['runner']['retry'] = args.retry
elif args.dlc:
new_cfg['eval']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['eval']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['eval']['runner']['retry'] = args.retry
else:
new_cfg['eval']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['eval']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)