OpenCompass/opencompass/datasets/mgsm.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

81 lines
2.2 KiB
Python

import re
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MGSMSDataset(BaseDataset):
@staticmethod
def load(path: str):
path = get_data_path(path, local_mode=True)
src_lines = open(path, 'r', encoding='utf-8').readlines()
data = {'question': [], 'answer': []}
for lines in src_lines:
question, answer = lines.strip().split('\t')
data['question'].append(question)
data['answer'].append(answer)
dataset = Dataset.from_dict({
'question': data['question'],
'answer': data['answer']
})
return dataset
LANG_TO_ANSWER_PREFIX = {
'en': 'Answer',
'bn': 'উত্তর',
'de': 'Antwort',
'es': 'Respuesta',
'fr': 'Réponse',
'ja': '答え',
'ru': 'Ответ',
'sw': 'Jibu',
'te': 'సమాధానం',
'th': 'คำตอบ',
'zh': '答案',
}
def mgsm_postprocess(text: str, lang: str) -> str:
answer_prefix = LANG_TO_ANSWER_PREFIX[lang]
if answer_prefix not in text:
return ''
answer_text = text.split(answer_prefix)[-1].strip()
numbers = re.findall(r'\d+\.?\d*', answer_text.replace(',', ''))
return numbers[-1].rstrip('.') if numbers else ''
class MGSM_Evaluator(BaseEvaluator):
def score(self, predictions, references):
assert len(predictions) == len(references)
num_correct, total = 0, 0
details = {}
for index, (references_answer, predictions_answer) in enumerate(
zip(references, predictions)):
if references_answer == predictions_answer:
is_correct = True
else:
is_correct = False
num_correct += is_correct
total += 1
details[str(index)] = {
'references': references_answer,
'predictions': predictions_answer,
'correct': is_correct,
}
accuracy = num_correct / total * 100
final_result = {'accuracy': accuracy, 'details': details}
return final_result