OpenCompass/opencompass/datasets/dingo.py
shijinpjlab 7528b8ab8a
[Feature] Add dingo test (#1529)
* add qa dingo

* update

* change name qa to dingo

* eval model: llm_base

* update path

* change name and move path

* add eval_dingo

* update import

* add for pip

* add dingo package

* change import place

* update import place

* fix lint fail

* isort

* double quoted

---------

Co-authored-by: sj <shijin@pjlab.org.cn>
2024-09-29 19:24:58 +08:00

85 lines
2.6 KiB
Python

# flake8: nodingo
# yapf: disable
import csv
import json
import os
import time
from typing import List
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class DingoDataset(BaseDataset):
@staticmethod
def load(path: str):
raw_data = []
with open(path, encoding='utf-8') as f:
reader = csv.reader(f, delimiter=';')
for row in reader:
if len(row) < 1:
row = ['']
raw_data.append({'input': row[0]})
return Dataset.from_list(raw_data)
@LOAD_DATASET.register_module()
class DingoLongDataset(BaseDataset):
@staticmethod
def load(path: str):
raw_data = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
raw_data.append({'input': json.loads(line).get('input')})
return Dataset.from_list(raw_data)
@ICL_EVALUATORS.register_module()
class DingoEvaluator(BaseEvaluator):
def score(self, origin_prompt: List, predictions: List) -> dict:
try:
# from dingo.model.model import Model
from dingo.exec import Executor
from dingo.io import InputArgs
except Exception:
raise ModuleNotFoundError(
'=========== '
'dingo register fail. please try: pip install dingo-python.'
' ===========')
current_time = time.strftime('%Y%m%d_%H%M%S', time.localtime())
file_data = [{'prompt': pmt, 'prediction': prd}
for pmt, prd in zip(origin_prompt, predictions)]
file_name = 'dingo_file_' + current_time + '.jsonl'
with open(file_name, 'a', encoding='utf-8') as f:
for d in file_data:
json.dump(d, f, ensure_ascii=False)
f.write('\n')
input_data = {
'eval_models': ['llm_base'],
'input_path': file_name,
'output_path': './outputs/dingo/',
'dataset': 'local',
'datasource': 'local',
'data_format': 'jsonl',
'column_prompt': ['prompt'],
'column_content': ['prediction'],
}
# Model.apply_config(input_data["custom_config_path"])
input_args = InputArgs(**input_data)
executor = Executor.exec_map['local'](input_args)
result = executor.execute()
summary = result[0].to_dict()
os.remove(file_name)
return summary