mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
267 lines
9.5 KiB
Python
267 lines
9.5 KiB
Python
# flake8: noqa: E501
|
|
import csv
|
|
import os
|
|
import os.path as osp
|
|
import re
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
from mmengine import ConfigDict
|
|
|
|
try:
|
|
from prettytable import from_csv
|
|
except ImportError:
|
|
from_csv = None
|
|
|
|
from opencompass.utils import model_abbr_from_cfg
|
|
|
|
from .subjective_post_process import post_process_autoj, post_process_judgelm
|
|
from .utils import get_judgeanswer_and_reference, get_outdir
|
|
|
|
CATEGORIES = {
|
|
'中文推理': ['数学计算', '逻辑推理'],
|
|
'中文语言': ['基本任务', '中文理解', '综合问答', '文本写作', '角色扮演', '专业能力'],
|
|
}
|
|
|
|
All_Dimensions = [
|
|
'事实正确性', '满足用户需求', '安全无害', '清晰度', '逻辑性', '完备性', '创造性', '可负责程度', '逻辑连贯性',
|
|
'公平与可负责程度', '丰富度', '综合得分'
|
|
]
|
|
|
|
|
|
def extract_rating(text):
|
|
pattern = r'{(.*?)}(?![^{]*{)' # match last brackets
|
|
match = re.search(pattern, text)
|
|
|
|
if match:
|
|
dictionary_str = match.group(1)
|
|
kv_pattern = r"'(.*?)': (\d+)"
|
|
matches = re.findall(kv_pattern, dictionary_str)
|
|
result_dict = {key: int(value) for key, value in matches}
|
|
return result_dict
|
|
else:
|
|
return None
|
|
|
|
|
|
def check_rating(rating, all_dimensions):
|
|
for k, v in rating.items():
|
|
if isinstance(v, (int, float)) and k in all_dimensions: # 确保值是数字
|
|
if v >= 0 and v <= 10:
|
|
pass
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
return rating
|
|
|
|
|
|
def post_process_alignbench(judgement: str,
|
|
all_dimensions=All_Dimensions,
|
|
possible_keys=['综合得分']):
|
|
"""Input a string like below:
|
|
|
|
xxx{'事实正确性': 1, '满足用户需求': 1, '清晰度': 2, '完备性': 1, '综合得分': 1}xxx,
|
|
and extract each score
|
|
"""
|
|
|
|
def extract_score(text):
|
|
keys_pattern = '|'.join(map(re.escape, possible_keys))
|
|
pattern = rf"({'|'.join(possible_keys)}): (\d+(\.\d{{1,2}})?)"
|
|
match = re.search(pattern, text)
|
|
if match:
|
|
try:
|
|
return float(match.group(1))
|
|
except ValueError:
|
|
return -1
|
|
return -1
|
|
|
|
judgement = judgement.replace('\n', '')
|
|
rating = extract_rating(judgement)
|
|
|
|
if rating is not None:
|
|
score = -1
|
|
for key in possible_keys:
|
|
score = rating.get(key, -1)
|
|
if score != -1:
|
|
break
|
|
if score == -1:
|
|
score = extract_score(judgement)
|
|
if score >= 0 and score <= 10:
|
|
pass
|
|
else:
|
|
score = -1
|
|
rating = check_rating(rating, all_dimensions)
|
|
else:
|
|
score = -1
|
|
if rating == None or score == -1:
|
|
return None
|
|
else:
|
|
return {'rating': rating, 'score': score}
|
|
|
|
|
|
def get_dimension_results(judged_answers, references, fout, fout_flag, model):
|
|
dimension_ratings = defaultdict(int)
|
|
dimension_counts = defaultdict(int)
|
|
for ans, ref in zip(judged_answers, references):
|
|
for k, v in ans['rating'].items():
|
|
if k != '综合得分' or k != 'Overall Score':
|
|
dimension_ratings[k] += v
|
|
dimension_counts[k] += 1
|
|
else:
|
|
if k == '综合得分':
|
|
dimension_ratings['综合得分'] += ans['score']
|
|
dimension_counts['综合得分'] += 1
|
|
else:
|
|
dimension_ratings['Overall Score'] += ans['score']
|
|
dimension_counts['Overall Score'] += 1
|
|
|
|
dimension_avg_ratings = defaultdict(float)
|
|
for dimension, total_score in dimension_ratings.items():
|
|
dimension_avg_ratings[
|
|
dimension] = total_score / dimension_counts[dimension]
|
|
|
|
scores = {model: dimension_avg_ratings}
|
|
rows = list(scores.keys())
|
|
columns = list(scores[rows[0]].keys())
|
|
with open(fout, 'a+', newline='') as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
if fout_flag == 0:
|
|
writer.writerow(['模型'] + columns)
|
|
|
|
for row in rows:
|
|
writer.writerow([row] +
|
|
[scores[row][column] for column in columns])
|
|
|
|
|
|
def get_capability_results(judged_answers,
|
|
references,
|
|
fout,
|
|
fout_flag,
|
|
model,
|
|
categories=CATEGORIES):
|
|
capability_ratings = defaultdict(int)
|
|
capability_counts = defaultdict(int)
|
|
for ans, ref in zip(judged_answers, references):
|
|
capability_ratings[ref['capability']] += ans['score']
|
|
capability_counts[ref['capability']] += 1
|
|
|
|
capability_avg_ratings = defaultdict(float)
|
|
|
|
for capability, total_score in capability_ratings.items():
|
|
capability_avg_ratings[
|
|
capability] = total_score / capability_counts[capability]
|
|
|
|
temp_list = []
|
|
total_column_num = 2
|
|
for category, sub_categories in categories.items():
|
|
total_column_num += 1 + len(sub_categories)
|
|
capability_avg_ratings[category + '总分'] = np.mean([
|
|
np.mean(capability_avg_ratings[cat])
|
|
for cat in categories[category]
|
|
])
|
|
temp_list.append(category + '总分')
|
|
capability_avg_ratings['总分'] = 0
|
|
for temp in temp_list:
|
|
capability_avg_ratings['总分'] += capability_avg_ratings[temp]
|
|
capability_avg_ratings['总分'] /= len(temp_list)
|
|
scores = {model: capability_avg_ratings}
|
|
|
|
with open(fout, 'a+', newline='') as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
if fout_flag == 0:
|
|
num_header = [str(i) for i in range(total_column_num)]
|
|
writer.writerow(num_header)
|
|
|
|
header = ['模型', '总分']
|
|
for category, sub_categories in categories.items():
|
|
header.append(category)
|
|
header.extend([None for _ in range(len(sub_categories))])
|
|
writer.writerow(header)
|
|
|
|
sub_header = ['模型', '总分']
|
|
for category, sub_categories in categories.items():
|
|
sub_header.extend([category + '总分'])
|
|
sub_header.extend(sub_categories)
|
|
writer.writerow(sub_header)
|
|
|
|
row = [model]
|
|
row.append(scores[model]['总分'])
|
|
for category, sub_categories in categories.items():
|
|
row.append(scores[model][category + '总分'])
|
|
for sub_category in sub_categories:
|
|
row.append(scores[model][sub_category])
|
|
writer.writerow(row)
|
|
|
|
|
|
class AlignmentBenchSummarizer:
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
Args:
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
It's expected to be filled out at runtime.
|
|
"""
|
|
|
|
def __init__(self, config: ConfigDict, judge_type='general') -> None:
|
|
self.tasks = []
|
|
self.cfg = config
|
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
|
self.eval_model_abbrs = [
|
|
model_abbr_from_cfg(model) for model in self.eval_model_cfgs
|
|
]
|
|
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model'])
|
|
self.judge_type = judge_type
|
|
assert self.judge_type in ['general', 'autoj', 'judgelm']
|
|
self.judge_map = {
|
|
'general': post_process_alignbench,
|
|
'autoj': post_process_autoj,
|
|
'judgelm': post_process_judgelm
|
|
}
|
|
self.judge_function = self.judge_map[self.judge_type]
|
|
self.category = CATEGORIES
|
|
|
|
def summarize(self,
|
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
Args:
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
Returns:
|
|
pd.DataFrame: The summary results.
|
|
"""
|
|
dataset_cfgs = self.cfg['datasets']
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
fout_flag, fout_flag2 = 0, 0
|
|
for eval_model_abbr in self.eval_model_abbrs:
|
|
subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr
|
|
subdir_path = os.path.join(results_folder, subdir)
|
|
if os.path.isdir(subdir_path):
|
|
model, judge_model = eval_model_abbr, self.judge_abbr
|
|
if self.judge_type == 'general':
|
|
fout = osp.join(
|
|
output_dir,
|
|
'judged-by--' + judge_model + '-dimension.csv')
|
|
fout2 = osp.join(
|
|
output_dir,
|
|
'judged-by--' + judge_model + '-capability.csv')
|
|
for dataset in dataset_cfgs:
|
|
judged_answers, references = get_judgeanswer_and_reference(
|
|
dataset, subdir_path, self.judge_function)
|
|
if self.judge_type == 'general':
|
|
get_dimension_results(judged_answers, references, fout,
|
|
fout_flag, model)
|
|
fout_flag += 1
|
|
get_capability_results(judged_answers, references, fout2,
|
|
fout_flag2, model, self.category)
|
|
fout_flag2 += 1
|
|
else:
|
|
print(subdir_path + ' is not exist! please check!')
|
|
if self.judge_type == 'general':
|
|
with open(fout, 'r') as f:
|
|
x = from_csv(f)
|
|
print(x)
|
|
with open(fout2, 'r') as f:
|
|
x = from_csv(f)
|
|
print(x)
|