OpenCompass/configs/eval_subjective_mtbench101.py
Xingyuan Bu 02a0a4e857
MT-Bench-101 (#1215)
* add mt-bench-101

* add readme and requirements

* add mt-bench-101 data

* Update readme_mtbench101.md

* update readme

* update leaderboard

* fix typo

* Update readme_mtbench101.md

* fit newest opencompass

* update readme.md

* mtbench101 to opencompass

* mtbench101 to opencompass

* for code review

* for code review

* for code review

* hook

* hook

---------

Co-authored-by: liujie <ljie@buaa.edu.cn>
2024-06-03 14:52:12 +08:00

95 lines
3.0 KiB
Python

from mmengine.config import read_base
with read_base():
from .datasets.subjective.multiround.mtbench101_judge import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import MTBench101Summarizer
# ---------------------------------------------------------------------------------------------------------
api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=4096,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=2, num_procs=1),
)
]
datasets = [*subjective_datasets]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=10000),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
quotatype='auto',
max_num_workers=32,
task=dict(type=OpenICLInferTask),
),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview', # To compare with the official leaderboard, please use gpt-4-1106-preview
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=4096,
max_seq_len=4096,
batch_size=8,
temperature=0.8,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveSizePartitioner, max_task_size=100000, mode='singlescore', models=models, judge_models=judge_models),
runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=MTBench101Summarizer, judge_type='single')
work_dir = 'outputs/mtbench101/'