OpenCompass/configs/datasets/obqa/obqa_ppl_c7c154.py
Fengzhe Zhou 689ffe5b63
[Feature] Use dataset in local path (#570)
* update commonsenseqa

* update drop

* update flores_first100

* update gsm8k

* update humaneval

* update lambda

* update obqa

* update piqa

* update race

* update siqa

* update story_cloze

* update strategyqa

* update tydiqa

* update winogrande

* update doc

* update hellaswag

* fix obqa

* update collections

* update .zip name
2023-11-13 13:00:37 +08:00

65 lines
1.9 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import OBQADataset
_input_columns = [
['question_stem', 'A', 'B', 'C', 'D'],
['question_stem', 'A', 'B', 'C', 'D', 'fact1'],
]
_template = [
{
ans: dict(
round=[
dict(
role="HUMAN",
prompt=
"Question: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:"
),
dict(role="BOT", prompt=ans),
], )
for ans in ['A', 'B', 'C', 'D']
},
{
ans: dict(
round=[
dict(
role="HUMAN",
prompt=
"Given the fact: {fact1}\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:"
),
dict(role="BOT", prompt=ans),
], )
for ans in ['A', 'B', 'C', 'D']
}
]
obqa_datasets = [
dict(
abbr="openbookqa",
type=OBQADataset,
path='./data/openbookqa/Main/test.jsonl',
),
dict(
abbr='openbookqa_fact',
type=OBQADataset,
path='./data/openbookqa/Additional/test_complete.jsonl',
),
]
for _i in range(2):
obqa_reader_cfg = dict(
input_columns=_input_columns[_i], output_column="answerKey")
obqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=_template[_i]),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
obqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
obqa_datasets[_i]["reader_cfg"] = obqa_reader_cfg
obqa_datasets[_i]["infer_cfg"] = obqa_infer_cfg
obqa_datasets[_i]["eval_cfg"] = obqa_eval_cfg