OpenCompass/opencompass/multimodal/models/minigpt_4/minigpt_4.py
Yuan Liu 191a3f6f9d
[Feature]: Use multimodal (#73)
* [Feature]: Add minigpt-4

* [Feature]: Add mm local runner

* [Feature]: Add instructblip

* [Feature]: Delete redundant file

* [Feature]: Delete redundant file

* [Feature]: Add README to InstructBLIP

* [Feature]: Update MiniGPT-4

* [Fix]: Fix lint

* [Feature]add omnibenchmark readme (#49)

* add omnibenchmark readme

* fix

* Update OmniMMBench.md

* Update OmniMMBench.md

* Update OmniMMBench.md

* [Fix]: Refine name (#54)

* [Feature]: Unify out and err

* [Fix]: Fix lint

* [Feature]: Rename to mmbench and change weight path

* [Feature]: Delete Omni in instructblip

* [Feature]: Check the avaliablity of lavis

* [Fix]: Fix lint

* [Feature]: Refactor MM

* [Refactor]: Refactor path

* [Feature]: Delete redundant files

* [Refactor]: Delete redundant files

---------

Co-authored-by: Wangbo Zhao(黑色枷锁) <56866854+wangbo-zhao@users.noreply.github.com>
2023-08-03 11:07:50 +08:00

182 lines
6.3 KiB
Python

import os
import re
import sys
import torch
import torch.nn as nn
from mmengine.device import get_device
from transformers import StoppingCriteriaList
from opencompass.registry import MM_MODELS
from .utils import StoppingCriteriaSub
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
def load_package():
"""Load required packages from MiniGPT-4."""
current_file_path = os.path.abspath(__file__)
current_folder_path = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_folder_path, 'MiniGPT-4')) # noqa
from minigpt4.models.mini_gpt4 import MiniGPT4
sys.path.pop(-1)
return MiniGPT4
MiniGPT4 = load_package()
@MM_MODELS.register_module('minigpt-4-mmbench')
class MiniGPT4MMBench(MiniGPT4):
"""Inference code of MiniGPT-4 on MMBench.
Args:
llama_model (str): The path of vicuna path.
sys_prompt (str): The prompt added to the beginning
of each query. Defaults to ''.
low_resource (bool): Whether loaded in low precision.
Defaults to False.
"""
def __init__(self,
llama_model: str,
sys_prompt: str = '',
low_resource: bool = False) -> None:
super().__init__(llama_model=llama_model, low_resource=low_resource)
cur_device = get_device()
stop_words_ids = [
torch.tensor([835]).to(cur_device),
torch.tensor([2277, 29937]).to(cur_device),
]
self.stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
self.sys_prompt = sys_prompt
def encode_img(self, image):
device = image.device
with self.maybe_autocast():
image_embeds = self.ln_vision(
self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1,
-1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
atts_llama = torch.ones(inputs_llama.size()[:-1],
dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def pack_inputs(self, batch):
images = [image.unsqueeze(0) for image in batch['inputs']]
data_samples = [data_sample for data_sample in batch['data_samples']]
images = torch.cat(images, dim=0).to(get_device())
inputs = {'image': images, 'data_samples': data_samples}
return inputs
def generate(self, batch):
inputs = self.pack_inputs(batch)
image = inputs.pop('image')
data_samples = inputs['data_samples']
samples = {'image': image}
question = [
data_sample.get('question') for data_sample in data_samples
]
options = [data_sample.get('options') for data_sample in data_samples]
samples.update({'question': question[0]})
samples.update({'options': options[0]})
if data_samples[0].get('context') is not None:
context = [
data_sample.get('context') for data_sample in data_samples
]
samples.update({'context': context})
data_sample = data_samples[0]
img_prompt = '###Human: <Img><ImageHere></Img> '
if 'context' in samples:
context_prompt = samples['context'][0]
question = samples['question']
options = samples['options']
if 'context' in samples:
prompt = img_prompt + ' ' + context_prompt + ' ' + question + ' ' + options # noqa
else:
prompt = img_prompt + ' ' + question + ' ' + options
# prompt = self.sys_prompt + prompt
prompt = prompt + '###Assistant:'
image = samples['image']
img_embeds, _ = self.encode_img(image)
prompt_segs = prompt.split('<ImageHere>')
prompt_seg_tokens = [
self.llama_tokenizer(seg,
return_tensors='pt',
add_special_tokens=i == 0).
to(self.llama_model.model.embed_tokens.weight.device).input_ids
for i, seg in enumerate(prompt_segs)
]
prompt_seg_embs = [
self.llama_model.model.embed_tokens(seg)
for seg in prompt_seg_tokens
]
prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]]
prompt_embs = torch.cat(prompt_seg_embs, dim=1)
# generate output
outputs = self.llama_model.generate(
inputs_embeds=prompt_embs,
max_new_tokens=20,
num_beams=5,
do_sample=False,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=-1.0,
temperature=1.0,
stopping_criteria=self.stopping_criteria,
num_return_sequences=1)
output_token = outputs[0]
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = self.llama_tokenizer.decode(output_token,
add_special_tokens=False)
output_text = self.post_process(output_text)
data_sample.pred_answer = output_text
return data_sample
def post_process(self, output_text):
output_text = output_text.split('###')[0]
output_text = output_text.split('Assistant:')[-1].strip()
output_text = output_text.strip('</s><s>')
output_text = output_text.strip('</Img>')
output_text = output_text.strip()
pattern = re.compile(r'([A-Z]\.)')
res = pattern.findall(output_text)
if len(res) > 0:
output_text = res[0][:-1]
return output_text