OpenCompass/opencompass/datasets/triviaqa.py

96 lines
3.2 KiB
Python

import csv
import json
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
@LOAD_DATASET.register_module()
class TriviaQADataset(BaseDataset):
@staticmethod
def load(path: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
filename = osp.join(path, f'trivia-{split}.qa.csv')
with open(filename, 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='\t')
raw_data = []
for row in reader:
assert len(row) == 2
question = row[0]
answers = eval(row[1])
if split == 'test':
answers = answers[0]
raw_data.append({'question': question, 'answer': answers})
dataset[split] = Dataset.from_list(raw_data)
return dataset
@LOAD_DATASET.register_module()
class TriviaQADataset_V2(BaseDataset):
@staticmethod
def load(path: str):
dataset = DatasetDict()
for split in ['validation', 'train']:
filename = osp.join(path, f'triviaqa-{split}.jsonl')
raw_data = []
with open(filename, 'r', encoding='utf-8') as f:
for doc in f:
doc = json.loads(doc)
raw_data.append(doc)
dataset[split] = Dataset.from_list(raw_data)
return dataset
@LOAD_DATASET.register_module()
class TriviaQADataset_V3(BaseDataset):
@staticmethod
def load(path: str):
data_list = []
with open(path, 'r', encoding='utf-8') as f:
for doc in f:
data_list.append(json.loads(doc))
return Dataset.from_list(data_list)
@ICL_EVALUATORS.register_module()
class TriviaQAEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
processed_predictions = []
for prediction in predictions:
prediction = prediction.strip().split('\n')[0].lower()
prediction = prediction.split('answer is')[-1]
prediction = prediction.split('a:')[-1]
prediction = prediction.split('answer:')[-1]
prediction = prediction.strip()
prediction = general_postprocess(prediction)
processed_predictions.append(prediction)
processed_answers = [[general_postprocess(j).lower() for j in i]
for i in references]
details = []
cnt = 0
for pred, cand_ans in zip(processed_predictions, processed_answers):
detail = {'pred': pred, 'answer': cand_ans, 'correct': False}
# is_correct = any([cand == pred for cand in cand_ans])
is_correct = any([cand in pred for cand in cand_ans])
cnt += int(is_correct)
detail['correct'] = is_correct
details.append(detail)
score = cnt / len(predictions) * 100
return {'score': score, 'details': details}