OpenCompass/opencompass/datasets/gpqa.py
2024-03-11 22:34:19 +08:00

60 lines
1.9 KiB
Python

import csv
import os
from datasets import Dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class GPQADataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
cnt = 0
data = []
with open(os.path.join(path, name), 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if row[7] == 'Question':
continue
cnt = cnt + 1
question = row[7]
# 第一个是正确选项
options = [row[8], row[9], row[10], row[11]]
shuffle_patterns = ['ABCD', 'BCDA', 'CDAB', 'DABC'] # 更新选项顺序
c = shuffle_patterns[cnt % 4]
line = {'question': question}
ground_truth = options[0]
for i in range(4):
line['ABCD'[i]] = options[ord(c[i]) - ord('A')]
for i in range(4):
if line['ABCD'[i]] == ground_truth:
line['answer'] = 'ABCD'[i]
break
data.append(line)
dataset = Dataset.from_list(data)
return dataset
class GPQAEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for i, j in zip(predictions, references):
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result