OpenCompass/configs/datasets/commonsenseqa/commonsenseqa_gen_1da2d0.py
Songyang Zhang d925748266
[Feature] Support 360API and FixKRetriever for CSQA dataset (#601)
* [Feature] Support 360API and FixKRetriever for CSQA dataset

* Update API

* Update API

* [Feature] Support 360API and FixKRetriever for CSQA dataset

* Update API

* Update API

* rm mathbench

* fix_lint

* Update opencompass/models/bytedance_api.py

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>

* update

* update

* update

---------

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
2023-11-21 20:25:47 +08:00

56 lines
1.6 KiB
Python

# Use FixKRetriever to avoid hang caused by the Huggingface
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess
commonsenseqa_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D", "E"],
output_column="answerKey",
test_split="validation")
_ice_template = dict(
type=PromptTemplate,
template=dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=
"{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\nAnswer:",
),
dict(
role="BOT",
prompt="{answerKey}",
),
],
),
ice_token="</E>",
)
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4, 5, 6, 7]),
inferencer=dict(type=GenInferencer),
)
commonsenseqa_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess),
)
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='./data/commonsenseqa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg,
)
]
del _ice_template