OpenCompass/configs/datasets/CHARM/charm_memory_gen_bbbd53.py
jxd 12b84aeb3b
[Feature] Update CHARM Memeorziation (#1230)
* update gemini api and add gemini models

* add openai models

* update CHARM evaluation

* add CHARM memorization tasks

* add CharmMemSummarizer (output eval details for memorization-independent reasoning analysis

* update CHARM readme

---------

Co-authored-by: wujiang <wujiang@pjlab.org.cn>
2024-07-26 18:42:30 +08:00

64 lines
2.2 KiB
Python

import os
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CharmDataset, CharmMemoryEvaluator, LMEvaluator
with read_base():
from .charm_memory_settings import charm_memory_tasks, judge_system_prompts, dataset_path
charm_memory_datasets = []
for _task in charm_memory_tasks:
charm_memory_reader_cfg = dict(input_columns=['input'],
output_column='target')
charm_memory_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role='HUMAN', prompt='请尽可能简短地回答下述问题。\n问题:{input}\n答:')
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
if _task == 'Chinese_Movie_and_Music_Recommendation':
charm_memory_eval_cfg = dict(
evaluator=dict(type=CharmMemoryEvaluator),
pred_role='BOT',
)
else:
judge_system_prompt = judge_system_prompts[_task]
charm_memory_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=judge_system_prompt +
"\n\n[Question]\n{input}\n[The Start of Reference Answer]\n{target}\n[The End of Reference Answer]\n\n[The Start of Assistant's Answer]\n{prediction}\n[The End of Assistant's Answer]" # noqa
),
]),
),
),
pred_role='BOT',
)
charm_memory_datasets.append(
dict(
type=CharmDataset,
path=dataset_path,
name=_task,
abbr='charm-memory-' + _task,
reader_cfg=charm_memory_reader_cfg,
infer_cfg=charm_memory_infer_cfg.copy(),
eval_cfg=charm_memory_eval_cfg.copy(),
))