mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* update gemini api and add gemini models * add openai models * update CHARM evaluation * add CHARM memorization tasks * add CharmMemSummarizer (output eval details for memorization-independent reasoning analysis * update CHARM readme --------- Co-authored-by: wujiang <wujiang@pjlab.org.cn>
163 lines
8.1 KiB
Markdown
163 lines
8.1 KiB
Markdown
# CHARM✨ Benchmarking Chinese Commonsense Reasoning of LLMs: From Chinese-Specifics to Reasoning-Memorization Correlations [ACL2024]
|
||
[](https://arxiv.org/abs/2403.14112)
|
||
[](./LICENSE)
|
||
<div align="center">
|
||
|
||
📃[Paper](https://arxiv.org/abs/2403.14112)
|
||
🏰[Project Page](https://opendatalab.github.io/CHARM/)
|
||
🏆[Leaderboard](https://opendatalab.github.io/CHARM/leaderboard.html)
|
||
✨[Findings](https://opendatalab.github.io/CHARM/findings.html)
|
||
</div>
|
||
|
||
<div align="center">
|
||
📖 <a href="./README_ZH.md"> 中文</a> | <a href="./README.md">English</a>
|
||
</div>
|
||
|
||
## 数据集介绍
|
||
|
||
**CHARM** 是首个全面深入评估大型语言模型(LLMs)在中文常识推理能力的基准测试,它覆盖了国际普遍认知的常识以及独特的中国文化常识。此外,CHARM 还可以评估 LLMs 独立于记忆的推理能力,并分析其典型错误。
|
||
|
||
|
||
## 与其他常识推理评测基准的比较
|
||
<html lang="en">
|
||
<table align="center">
|
||
<thead class="fixed-header">
|
||
<tr>
|
||
<th>基准</th>
|
||
<th>汉语</th>
|
||
<th>常识推理</th>
|
||
<th>中国特有知识</th>
|
||
<th>中国和世界知识域</th>
|
||
<th>推理和记忆的关系</th>
|
||
</tr>
|
||
</thead>
|
||
<tr>
|
||
<td><a href="https://arxiv.org/abs/2302.04752"> davis2023benchmarks</a> 中提到的基准</td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://arxiv.org/abs/1809.05053"> XNLI</a>, <a
|
||
href="https://arxiv.org/abs/2005.00333">XCOPA</a>,<a
|
||
href="https://arxiv.org/abs/2112.10668">XStoryCloze</a></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://arxiv.org/abs/2007.08124">LogiQA</a>,<a
|
||
href="https://arxiv.org/abs/2004.05986">CLUE</a>, <a
|
||
href="https://arxiv.org/abs/2306.09212">CMMLU</a></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://arxiv.org/abs/2312.12853">CORECODE</a> </td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
<td><strong><span style="color: red;">✘</span></strong></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong><a href="https://arxiv.org/abs/2403.14112">CHARM (ours)</a> </strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
<td><strong><span style="color: green;">✔</span></strong></td>
|
||
</tr>
|
||
</table>
|
||
|
||
|
||
## 🛠️ 如何使用
|
||
以下是快速下载 CHARM 并在 OpenCompass 上进行评估的步骤。
|
||
|
||
### 1. 下载 CHARM
|
||
```bash
|
||
git clone https://github.com/opendatalab/CHARM ${path_to_CHARM_repo}
|
||
|
||
cd ${path_to_opencompass}
|
||
mkdir data
|
||
ln -snf ${path_to_CHARM_repo}/data/CHARM ./data/CHARM
|
||
```
|
||
### 2. 推理和评测
|
||
```bash
|
||
cd ${path_to_opencompass}
|
||
|
||
# 修改配置文件`configs/eval_charm_rea.py`: 将现有的模型取消注释,或者添加你想评测的模型
|
||
python run.py configs/eval_charm_rea.py -r --dump-eval-details
|
||
|
||
# 修改配置文件`configs/eval_charm_mem.py`: 将现有的模型取消注释,或者添加你想评测的模型
|
||
python run.py configs/eval_charm_mem.py -r --dump-eval-details
|
||
```
|
||
推理和评测的结果位于路径`${path_to_opencompass}/outputs`, 如下所示:
|
||
```bash
|
||
outputs
|
||
├── CHARM_mem
|
||
│ └── chat
|
||
│ └── 20240605_151442
|
||
│ ├── predictions
|
||
│ │ ├── internlm2-chat-1.8b-turbomind
|
||
│ │ ├── llama-3-8b-instruct-lmdeploy
|
||
│ │ └── qwen1.5-1.8b-chat-hf
|
||
│ ├── results
|
||
│ │ ├── internlm2-chat-1.8b-turbomind_judged-by--GPT-3.5-turbo-0125
|
||
│ │ ├── llama-3-8b-instruct-lmdeploy_judged-by--GPT-3.5-turbo-0125
|
||
│ │ └── qwen1.5-1.8b-chat-hf_judged-by--GPT-3.5-turbo-0125
|
||
│ └── summary
|
||
│ └── 20240605_205020 # MEMORY_SUMMARY_DIR
|
||
│ ├── judged-by--GPT-3.5-turbo-0125-charm-memory-Chinese_Anachronisms_Judgment
|
||
│ ├── judged-by--GPT-3.5-turbo-0125-charm-memory-Chinese_Movie_and_Music_Recommendation
|
||
│ ├── judged-by--GPT-3.5-turbo-0125-charm-memory-Chinese_Sport_Understanding
|
||
│ ├── judged-by--GPT-3.5-turbo-0125-charm-memory-Chinese_Time_Understanding
|
||
│ └── judged-by--GPT-3.5-turbo-0125.csv # MEMORY_SUMMARY_CSV
|
||
└── CHARM_rea
|
||
└── chat
|
||
└── 20240605_152359
|
||
├── predictions
|
||
│ ├── internlm2-chat-1.8b-turbomind
|
||
│ ├── llama-3-8b-instruct-lmdeploy
|
||
│ └── qwen1.5-1.8b-chat-hf
|
||
├── results # REASON_RESULTS_DIR
|
||
│ ├── internlm2-chat-1.8b-turbomind
|
||
│ ├── llama-3-8b-instruct-lmdeploy
|
||
│ └── qwen1.5-1.8b-chat-hf
|
||
└── summary
|
||
├── summary_20240605_205328.csv # REASON_SUMMARY_CSV
|
||
└── summary_20240605_205328.txt
|
||
```
|
||
### 3. 生成分析结果
|
||
```bash
|
||
cd ${path_to_CHARM_repo}
|
||
|
||
# 生成论文中的Table5, Table6, Table9 and Table10,详见https://arxiv.org/abs/2403.14112
|
||
PYTHONPATH=. python tools/summarize_reasoning.py ${REASON_SUMMARY_CSV}
|
||
|
||
# 生成论文中的Figure3 and Figure9,详见https://arxiv.org/abs/2403.14112
|
||
PYTHONPATH=. python tools/summarize_mem_rea.py ${REASON_SUMMARY_CSV} ${MEMORY_SUMMARY_CSV}
|
||
|
||
# 生成论文中的Table7, Table12, Table13 and Figure11,详见https://arxiv.org/abs/2403.14112
|
||
PYTHONPATH=. python tools/analyze_mem_indep_rea.py data/CHARM ${REASON_RESULTS_DIR} ${MEMORY_SUMMARY_DIR} ${MEMORY_SUMMARY_CSV}
|
||
```
|
||
|
||
## 🖊️ 引用
|
||
```bibtex
|
||
@misc{sun2024benchmarking,
|
||
title={Benchmarking Chinese Commonsense Reasoning of LLMs: From Chinese-Specifics to Reasoning-Memorization Correlations},
|
||
author={Jiaxing Sun and Weiquan Huang and Jiang Wu and Chenya Gu and Wei Li and Songyang Zhang and Hang Yan and Conghui He},
|
||
year={2024},
|
||
eprint={2403.14112},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CL}
|
||
}
|
||
```
|