mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
182 lines
6.4 KiB
Python
182 lines
6.4 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
|
|
import yaml
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
RESULTS_STATION_PATH = os.getenv('RESULTS_STATION_PATH')
|
|
|
|
data_file_map = {
|
|
'ifeval': 'IFEval',
|
|
}
|
|
|
|
data_prefix_map = {}
|
|
|
|
with open('dataset-index.yml', 'r') as f1:
|
|
data_list = yaml.load(f1, Loader=yaml.FullLoader)
|
|
f1.close()
|
|
data_searchable_list = [next(iter(i.keys())) for i in data_list]
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='connect to results station')
|
|
|
|
parser.add_argument('-sp',
|
|
'--station-path',
|
|
type=str,
|
|
default=None,
|
|
help='if no env path, use this.')
|
|
parser.add_argument('-p',
|
|
'--my-path',
|
|
type=str,
|
|
default=None,
|
|
help='your operation path.')
|
|
parser.add_argument(
|
|
'-op',
|
|
'--operation',
|
|
type=str,
|
|
default='d',
|
|
help='u:update, d:download, ls: show dataset and model options')
|
|
parser.add_argument('-d',
|
|
'--dataset',
|
|
type=str,
|
|
default='mmlu_pro',
|
|
help='target dataset name')
|
|
parser.add_argument('-m',
|
|
'--model',
|
|
type=str,
|
|
default='deepseek-v2_5-turbomind',
|
|
help='target model name')
|
|
# parser.add_argument('-all',
|
|
# '--all-transfer',
|
|
# action='store_true',
|
|
# default=False,
|
|
# help='transfer all files under the path')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def read_json(path):
|
|
results = []
|
|
for i in path:
|
|
with open(i, 'r') as f:
|
|
results.append(json.load(f))
|
|
f.close()
|
|
return results
|
|
|
|
|
|
def load_json_files_by_prefix(prefix, target_path):
|
|
if prefix in data_file_map.keys():
|
|
prefix = data_file_map[prefix]
|
|
result_dict = {}
|
|
for filename in os.listdir(target_path):
|
|
if filename.startswith(prefix) and filename.endswith('.json'):
|
|
file_path = os.path.join(target_path, filename)
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
json_data = json.load(file)
|
|
result_dict[os.path.splitext(filename)[0]] = json_data
|
|
return result_dict
|
|
|
|
|
|
def main(path, mypath, args):
|
|
|
|
if args.dataset not in data_searchable_list:
|
|
raise ValueError('invalid dataset input!')
|
|
|
|
update_path = path + args.dataset if path[
|
|
-1] == '/' else path + '/' + args.dataset
|
|
update_filename = args.dataset + '_' + args.model + '.json'
|
|
update_goal = update_path + '/' + update_filename
|
|
|
|
# update from your path to result station
|
|
if args.operation == 'u':
|
|
mypath_prediction = (mypath + 'predictions/' +
|
|
args.model) if mypath[-1] == '/' else (
|
|
mypath + '/predictions/' + args.model)
|
|
mypath_result = (mypath + 'results/' +
|
|
args.model) if mypath[-1] == '/' else (mypath +
|
|
'/results/' +
|
|
args.model)
|
|
|
|
if os.path.exists(mypath_prediction) and os.path.exists(mypath_result):
|
|
|
|
result_dict = load_json_files_by_prefix(args.dataset,
|
|
mypath_result)
|
|
prediction_list = []
|
|
for i in result_dict.keys():
|
|
prediction_dict = load_json_files_by_prefix(
|
|
i, mypath_prediction)
|
|
for j in range(len(prediction_dict)):
|
|
for k in prediction_dict[i + '_' + str(j)].keys():
|
|
prediction_list.append({
|
|
'prediction':
|
|
prediction_dict[i + '_' + str(j)][k],
|
|
'sub_category':
|
|
i
|
|
})
|
|
update_dict = {
|
|
'predictions': prediction_list,
|
|
'results': result_dict,
|
|
}
|
|
|
|
if not os.path.exists(update_path):
|
|
os.makedirs(update_path)
|
|
if os.path.exists(update_goal):
|
|
input('This result exists! Press any key to continue...')
|
|
with open(update_goal, 'w', encoding='utf-8') as f:
|
|
json.dump(update_dict, f, ensure_ascii=False, indent=4)
|
|
f.close()
|
|
|
|
# read from result station to your path
|
|
if args.operation == 'd':
|
|
if not os.path.exists(update_goal):
|
|
raise ValueError('This result does not exist!')
|
|
with open(update_goal, 'r', encoding='utf-8') as f:
|
|
results = json.load(f)
|
|
f.close()
|
|
legal_key_set = {'predictions', 'results'}
|
|
if set(results.keys()) == legal_key_set and isinstance(
|
|
results['predictions'], list) and isinstance(
|
|
results['results'], dict):
|
|
print('Successfully download result from station!'
|
|
"you've got a dict with format as follows:"
|
|
"\n content['precitions', 'results']")
|
|
else:
|
|
raise ValueError('illegal format of the result!')
|
|
save_path = args.my_path if args.my_path[
|
|
-1] == '/' else args.my_path + '/'
|
|
save_path += args.dataset + '/'
|
|
if not os.path.exists(save_path):
|
|
os.makedirs(save_path)
|
|
with open(save_path + update_filename, 'w', encoding='utf-8') as f:
|
|
json.dump(results, f, ensure_ascii=False, indent=4)
|
|
f.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
|
|
if args.operation == 'ls':
|
|
print('----DATASET LIST----')
|
|
print(data_searchable_list)
|
|
print('----MODEL LIST----')
|
|
|
|
else:
|
|
if RESULTS_STATION_PATH is not None:
|
|
path = RESULTS_STATION_PATH
|
|
else:
|
|
path = args.station_path
|
|
if path is None:
|
|
raise ValueError('Please appoint the path of results station!')
|
|
if not os.path.exists(path):
|
|
raise ValueError('Not a valid path of results station!')
|
|
mypath = args.my_path
|
|
if mypath is None:
|
|
raise ValueError('Please appoint your own path!')
|
|
if not os.path.exists(mypath):
|
|
raise ValueError('Not a valid path of your own path!')
|
|
main(path, mypath, args)
|