mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
209 lines
8.5 KiB
Python
209 lines
8.5 KiB
Python
from mmengine.config import read_base
|
|
|
|
with read_base():
|
|
from opencompass.configs.datasets.ARC_c.ARC_c_few_shot_ppl import \
|
|
ARC_c_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.bbh.bbh_gen_98fba6 import \
|
|
bbh_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.cmmlu.cmmlu_ppl_041cbf import \
|
|
cmmlu_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.dingo.dingo_gen import \
|
|
datasets as dingo_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.drop.drop_gen_a2697c import \
|
|
drop_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.GaokaoBench.GaokaoBench_no_subjective_gen_d21e37 import \
|
|
GaokaoBench_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.gpqa.gpqa_few_shot_ppl_4b5a83 import \
|
|
gpqa_datasets # noqa: F401, E501
|
|
# Corebench v1.7
|
|
from opencompass.configs.datasets.gsm8k.gsm8k_gen_17d0dc import \
|
|
gsm8k_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.hellaswag.hellaswag_10shot_ppl_59c85e import \
|
|
hellaswag_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.humaneval.internal_humaneval_gen_ce6b06 import \
|
|
humaneval_datasets as humaneval_v2_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.humaneval.internal_humaneval_gen_d2537e import \
|
|
humaneval_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.math.math_4shot_base_gen_43d5b6 import \
|
|
math_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.MathBench.mathbench_2024_few_shot_mixed_4a3fd4 import \
|
|
mathbench_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.mbpp.sanitized_mbpp_gen_742f0c import \
|
|
sanitized_mbpp_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.mmlu.mmlu_ppl_ac766d import \
|
|
mmlu_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_few_shot_gen_bfaf90 import \
|
|
mmlu_pro_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.nq.nq_open_1shot_gen_20a989 import \
|
|
nq_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.race.race_few_shot_ppl import \
|
|
race_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_few_shot_ppl import \
|
|
BoolQ_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import \
|
|
TheoremQA_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.triviaqa.triviaqa_wiki_1shot_gen_20a989 import \
|
|
triviaqa_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.wikibench.wikibench_few_shot_ppl_c23d79 import \
|
|
wikibench_datasets # noqa: F401, E501
|
|
from opencompass.configs.datasets.winogrande.winogrande_5shot_ll_252f01 import \
|
|
winogrande_datasets # noqa: F401, E501
|
|
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b import \
|
|
models as hf_internlm2_5_7b_model # noqa: F401, E501
|
|
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b import \
|
|
models as lmdeploy_internlm2_5_7b_model # noqa: F401, E501
|
|
from opencompass.configs.summarizers.groups.bbh import \
|
|
bbh_summary_groups # noqa: F401, E501
|
|
# Summary Groups
|
|
from opencompass.configs.summarizers.groups.cmmlu import \
|
|
cmmlu_summary_groups # noqa: F401, E501
|
|
from opencompass.configs.summarizers.groups.GaokaoBench import \
|
|
GaokaoBench_summary_groups # noqa: F401, E501
|
|
from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \
|
|
mathbench_2024_summary_groups # noqa: F401, E501
|
|
from opencompass.configs.summarizers.groups.mmlu import \
|
|
mmlu_summary_groups # noqa: F401, E501
|
|
from opencompass.configs.summarizers.groups.mmlu_pro import \
|
|
mmlu_pro_summary_groups # noqa: F401, E501
|
|
|
|
race_datasets = [race_datasets[1]] # Only take RACE-High
|
|
humaneval_v2_datasets[0]['abbr'] = 'openai_humaneval_v2'
|
|
bbh_datasets = [
|
|
x for x in bbh_datasets if 'logical_deduction_seven_objects' in x['abbr']
|
|
or 'multistep_arithmetic_two' in x['abbr']
|
|
]
|
|
cmmlu_datasets = [
|
|
x for x in cmmlu_datasets if x['abbr'].replace('cmmlu-', '') in [
|
|
'ancient_chinese', 'chinese_civil_service_exam',
|
|
'chinese_driving_rule', 'chinese_food_culture',
|
|
'chinese_foreign_policy', 'chinese_history', 'chinese_literature',
|
|
'chinese_teacher_qualification', 'construction_project_management',
|
|
'elementary_chinese', 'elementary_commonsense', 'ethnology',
|
|
'high_school_politics', 'modern_chinese',
|
|
'traditional_chinese_medicine'
|
|
]
|
|
]
|
|
mmlu_datasets = [
|
|
x for x in mmlu_datasets if x['abbr'].replace('lukaemon_mmlu_', '') in [
|
|
'business_ethics', 'clinical_knowledge', 'college_medicine',
|
|
'global_facts', 'human_aging', 'management', 'marketing',
|
|
'medical_genetics', 'miscellaneous', 'nutrition',
|
|
'professional_accounting', 'professional_medicine', 'virology'
|
|
]
|
|
]
|
|
mmlu_pro_datasets = [mmlu_pro_datasets[0]]
|
|
mathbench_datasets = [x for x in mathbench_datasets if 'college' in x['abbr']]
|
|
GaokaoBench_datasets = [
|
|
x for x in GaokaoBench_datasets if '2010-2022_Math_II_MCQs' in x['abbr']
|
|
or '2010-2022_Math_II_Fill-in-the-Blank' in x['abbr']
|
|
]
|
|
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
|
|
|
summary_groups = sum(
|
|
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
|
|
summary_groups.append(
|
|
{
|
|
'name': 'Mathbench',
|
|
'subsets': ['mathbench-a (average)', 'mathbench-t (average)'],
|
|
}, )
|
|
|
|
summarizer = dict(
|
|
dataset_abbrs=[
|
|
'Language',
|
|
['race-high', 'accuracy'],
|
|
['ARC-c', 'accuracy'],
|
|
['BoolQ', 'accuracy'],
|
|
['triviaqa_wiki_1shot', 'score'],
|
|
['nq_open_1shot', 'score'],
|
|
'',
|
|
'General Reasoning',
|
|
['drop', 'accuracy'],
|
|
['bbh', 'naive_average'],
|
|
['GPQA_diamond', 'accuracy'],
|
|
['hellaswag', 'accuracy'],
|
|
['TheoremQA', 'score'],
|
|
['winogrande', 'accuracy'],
|
|
'',
|
|
'Math Calculation',
|
|
['gsm8k', 'accuracy'],
|
|
['GaokaoBench', 'weighted_average'],
|
|
'GaokaoBench_2010-2022_Math_II_MCQs',
|
|
'GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank',
|
|
['math', 'accuracy'],
|
|
['Mathbench', 'naive_average'],
|
|
'',
|
|
'Knowledge',
|
|
['wikibench-wiki-single_choice_cncircular', 'perf_4'],
|
|
['cmmlu', 'naive_average'],
|
|
['mmlu', 'naive_average'],
|
|
['mmlu_pro', 'naive_average'],
|
|
'',
|
|
'Code',
|
|
['openai_humaneval', 'humaneval_pass@1'],
|
|
['openai_humaneval_v2', 'humaneval_pass@1'],
|
|
['sanitized_mbpp', 'score'],
|
|
'',
|
|
['dingo_en_192', 'score'],
|
|
['dingo_zh_170', 'score'],
|
|
'',
|
|
'mmlu',
|
|
'mmlu-stem',
|
|
'mmlu-social-science',
|
|
'mmlu-humanities',
|
|
['mmlu-other', 'accuracy'],
|
|
'',
|
|
'cmmlu',
|
|
'cmmlu-stem',
|
|
'cmmlu-social-science',
|
|
'cmmlu-humanities',
|
|
'cmmlu-other',
|
|
['cmmlu-china-specific', 'accuracy'],
|
|
'',
|
|
'mmlu_pro',
|
|
'mmlu_pro_biology',
|
|
'mmlu_pro_business',
|
|
'mmlu_pro_chemistry',
|
|
'mmlu_pro_computer_science',
|
|
'mmlu_pro_economics',
|
|
'mmlu_pro_engineering',
|
|
'mmlu_pro_health',
|
|
'mmlu_pro_history',
|
|
'mmlu_pro_law',
|
|
'mmlu_pro_math',
|
|
'mmlu_pro_philosophy',
|
|
'mmlu_pro_physics',
|
|
'mmlu_pro_psychology',
|
|
'mmlu_pro_other',
|
|
'',
|
|
'bbh-logical_deduction_seven_objects',
|
|
'bbh-multistep_arithmetic_two',
|
|
'###### MathBench-A: Application Part ######',
|
|
'college',
|
|
'high',
|
|
'middle',
|
|
'primary',
|
|
'arithmetic',
|
|
'mathbench-a (average)',
|
|
'###### MathBench-T: Theory Part ######',
|
|
'college_knowledge',
|
|
'high_knowledge',
|
|
'middle_knowledge',
|
|
'primary_knowledge',
|
|
'mathbench-t (average)',
|
|
],
|
|
summary_groups=summary_groups,
|
|
)
|
|
|
|
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
|
|
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
|
|
|
|
for d in datasets:
|
|
d['reader_cfg']['test_range'] = '[0:16]'
|
|
|
|
for m in models:
|
|
m['abbr'] = m['abbr'] + '_fullbench'
|
|
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
|
|
m['engine_config']['max_batch_size'] = 1
|
|
m['batch_size'] = 1
|
|
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])
|