OpenCompass/opencompass/configs/datasets/NPHardEval/NPHardEval_gen_22aac5.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

60 lines
2.1 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.NPHardEval import (
HardGCPDataset, HardGCPEvaluator,
Hard_TSP_Dataset, Hard_TSP_Evaluator,
Hard_MSP_Dataset, Hard_MSP_Evaluator,
CMP_GCP_D_Dataset, CMP_GCP_D_Evaluator,
CMP_TSP_D_Dataset, CMP_TSP_D_Evaluator,
CMP_KSP_Dataset, CMP_KSP_Evaluator,
P_BSP_Dataset, P_BSP_Evaluator,
P_EDP_Dataset, P_EDP_Evaluator,
P_SPP_Dataset, P_SPP_Evaluator,
)
NPHardEval_tasks = [
['hard_GCP', 'GCP', HardGCPDataset, HardGCPEvaluator],
['hard_TSP', 'TSP', Hard_TSP_Dataset, Hard_TSP_Evaluator],
['hard_MSP', 'MSP', Hard_MSP_Dataset, Hard_MSP_Evaluator],
['cmp_GCP_D', 'GCP_Decision', CMP_GCP_D_Dataset, CMP_GCP_D_Evaluator],
['cmp_TSP_D', 'TSP_Decision', CMP_TSP_D_Dataset, CMP_TSP_D_Evaluator],
['cmp_KSP', 'KSP', CMP_KSP_Dataset, CMP_KSP_Evaluator],
['p_BSP', 'BSP', P_BSP_Dataset, P_BSP_Evaluator],
['p_EDP', 'EDP', P_EDP_Dataset, P_EDP_Evaluator],
['p_SPP', 'SPP', P_SPP_Dataset, P_SPP_Evaluator],
]
NPHardEval_datasets = []
for name, path_name, dataset, evaluator in NPHardEval_tasks:
NPHardEval_reader_cfg = dict(input_columns=['prompt', 'level'], output_column='q')
NPHardEval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt='</E>{prompt}'),
dict(role='BOT', prompt=''),
],
),
ice_token='</E>',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
NPHardEval_eval_cfg = dict(evaluator=dict(type=evaluator), pred_role='BOT')
NPHardEval_datasets.append(
dict(
type=dataset,
abbr=name,
path=f'./data/NPHardEval/{path_name}/',
reader_cfg=NPHardEval_reader_cfg,
infer_cfg=NPHardEval_infer_cfg,
eval_cfg=NPHardEval_eval_cfg,
)
)