mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* support seedbench * update docstrings * update * update * update * update according to review * rebase * fix lint * update
283 lines
11 KiB
Python
283 lines
11 KiB
Python
import os
|
|
import sys
|
|
|
|
import mmengine
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine.device import get_device
|
|
from transformers import StoppingCriteriaList
|
|
|
|
from opencompass.registry import MM_MODELS
|
|
|
|
from .utils import StoppingCriteriaSub
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
"""Subclass torch's LayerNorm to handle fp16."""
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
orig_type = x.dtype
|
|
ret = super().forward(x.type(torch.float32))
|
|
return ret.type(orig_type)
|
|
|
|
|
|
def load_package():
|
|
"""Load required packages from MiniGPT-4."""
|
|
current_file_path = os.path.abspath(__file__)
|
|
current_folder_path = os.path.dirname(current_file_path)
|
|
|
|
sys.path.append(os.path.join(current_folder_path, 'MiniGPT-4')) # noqa
|
|
from minigpt4.models.mini_gpt4 import MiniGPT4
|
|
|
|
sys.path.pop(-1)
|
|
|
|
return MiniGPT4
|
|
|
|
|
|
MiniGPT4 = load_package()
|
|
|
|
|
|
@MM_MODELS.register_module('minigpt-4')
|
|
class MiniGPT4Inferencer(MiniGPT4):
|
|
"""Inference code of MiniGPT-4.
|
|
|
|
Args:
|
|
llama_model (str): The path of vicuna path.
|
|
prompt_constructor (dict): The config of prompt constructor.
|
|
post_processor (dict): The config of post processor.
|
|
do_sample (bool): Whether use sampling. Defaults to False.
|
|
max_length (int): The max length of output. Defaults to 30.
|
|
img_size (int): The size of image. Defaults to 224.
|
|
low_resource (bool): Whether loaded in low precision.
|
|
Defaults to False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
llama_model: str,
|
|
prompt_constructor: dict,
|
|
post_processor: dict,
|
|
do_sample: bool = False,
|
|
max_length: int = 30,
|
|
img_size: int = 224,
|
|
low_resource: bool = False,
|
|
mode: str = 'generation',
|
|
n_segments: int = 1) -> None:
|
|
super().__init__(llama_model=llama_model,
|
|
low_resource=low_resource,
|
|
img_size=img_size)
|
|
self.mode = mode
|
|
self.n_segments = n_segments
|
|
|
|
cur_device = get_device()
|
|
stop_words_ids = [
|
|
torch.tensor([835]).to(cur_device),
|
|
torch.tensor([2277, 29937]).to(cur_device),
|
|
]
|
|
self.stopping_criteria = StoppingCriteriaList(
|
|
[StoppingCriteriaSub(stops=stop_words_ids)])
|
|
|
|
self.prompt_constructor = mmengine.registry.build_from_cfg(
|
|
prompt_constructor, MM_MODELS)
|
|
if post_processor is not None:
|
|
self.post_processor = mmengine.registry.build_from_cfg(
|
|
post_processor, MM_MODELS)
|
|
self.do_sample = do_sample
|
|
self.max_length = max_length
|
|
|
|
def forward(self, batch):
|
|
if self.mode == 'generation':
|
|
return self.generate(batch)
|
|
elif self.mode == 'loss':
|
|
return self.loss(batch)
|
|
else:
|
|
raise RuntimeError(f'Invalid mode "{self.mode}".')
|
|
|
|
def encode_img(self, image):
|
|
device = image.device
|
|
|
|
with self.maybe_autocast():
|
|
if image.dim() == 5:
|
|
inputs_llama, atts_llama = [], []
|
|
for j in range(image.size(2)):
|
|
this_frame = image[:, :, j, :, :]
|
|
frame_embeds = self.ln_vision(
|
|
self.visual_encoder(this_frame))
|
|
frame_atts = torch.ones(frame_embeds.size()[:-1],
|
|
dtype=torch.long).to(image.device)
|
|
|
|
query_tokens = self.query_tokens.expand(
|
|
frame_embeds.shape[0], -1, -1)
|
|
frame_query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=frame_embeds,
|
|
encoder_attention_mask=frame_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
frame_inputs_llama = self.llama_proj(
|
|
frame_query_output.last_hidden_state[:, :query_tokens.
|
|
size(1), :])
|
|
frame_atts_llama = torch.ones(
|
|
frame_inputs_llama.size()[:-1],
|
|
dtype=torch.long).to(image.device)
|
|
inputs_llama.append(frame_inputs_llama)
|
|
atts_llama.append(frame_atts_llama)
|
|
inputs_llama = torch.cat(inputs_llama, dim=1)
|
|
atts_llama = torch.cat(atts_llama, dim=1)
|
|
else:
|
|
image_embeds = self.ln_vision(
|
|
self.visual_encoder(image)).to(device)
|
|
image_atts = torch.ones(image_embeds.size()[:-1],
|
|
dtype=torch.long).to(device)
|
|
|
|
query_tokens = self.query_tokens.expand(
|
|
image_embeds.shape[0], -1, -1)
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
|
atts_llama = torch.ones(inputs_llama.size()[:-1],
|
|
dtype=torch.long).to(image.device)
|
|
return inputs_llama, atts_llama
|
|
|
|
def pack_inputs(self, batch):
|
|
images = [image.unsqueeze(0) for image in batch['inputs']]
|
|
data_samples = [data_sample for data_sample in batch['data_samples']]
|
|
images = torch.cat(images, dim=0).to(get_device())
|
|
inputs = {'image': images, 'data_samples': data_samples}
|
|
return inputs
|
|
|
|
def generate(self, batch):
|
|
inputs = self.pack_inputs(batch)
|
|
inputs = self.prompt_constructor(inputs)
|
|
image = inputs['image']
|
|
prompt = inputs['prompt']
|
|
data_samples = inputs['data_samples']
|
|
|
|
# The main process of generation
|
|
img_embeds, _ = self.encode_img(image)
|
|
prompt_segs = prompt.split('<ImageHere>')
|
|
prompt_seg_tokens = [
|
|
self.llama_tokenizer(seg,
|
|
return_tensors='pt',
|
|
add_special_tokens=i == 0).
|
|
to(self.llama_model.model.embed_tokens.weight.device).input_ids
|
|
for i, seg in enumerate(prompt_segs)
|
|
]
|
|
prompt_seg_embs = [
|
|
self.llama_model.model.embed_tokens(seg)
|
|
for seg in prompt_seg_tokens
|
|
]
|
|
prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]]
|
|
prompt_embs = torch.cat(prompt_seg_embs, dim=1)
|
|
|
|
# generate output
|
|
outputs = self.llama_model.generate(
|
|
inputs_embeds=prompt_embs,
|
|
max_length=self.max_length,
|
|
num_beams=5,
|
|
do_sample=self.do_sample,
|
|
min_length=1,
|
|
top_p=0.9,
|
|
repetition_penalty=1.0,
|
|
length_penalty=-1.0,
|
|
temperature=1.0,
|
|
stopping_criteria=self.stopping_criteria,
|
|
num_return_sequences=1)
|
|
|
|
for i, data_sample in enumerate(data_samples):
|
|
output_token = outputs[i]
|
|
output_text = self.post_processor(output_token,
|
|
self.llama_tokenizer)
|
|
data_sample.pred_answer = output_text
|
|
data_samples[i] = data_sample
|
|
return data_samples
|
|
|
|
def loss(self, batch):
|
|
inputs = self.pack_inputs(batch)
|
|
inputs = self.prompt_constructor(inputs)
|
|
image = inputs['image']
|
|
batch_size = image.size(0)
|
|
prompt = inputs['prompt']
|
|
data_samples = inputs['data_samples']
|
|
choices = data_samples[0].choices
|
|
|
|
with torch.no_grad():
|
|
img_embeds, atts_img = self.encode_img(image)
|
|
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img,
|
|
prompt)
|
|
|
|
self.llama_tokenizer.padding_side = 'right'
|
|
|
|
n_cands = len(choices)
|
|
losses = []
|
|
for n in range(self.n_segments):
|
|
seg_len = n_cands // self.n_segments
|
|
if n == (self.n_segments - 1):
|
|
seg_len = n_cands - seg_len * (self.n_segments - 1)
|
|
|
|
to_regress_tokens = self.llama_tokenizer(
|
|
choices,
|
|
return_tensors='pt',
|
|
padding='longest',
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
add_special_tokens=False).to(image.device)
|
|
|
|
targets = to_regress_tokens.input_ids.masked_fill(
|
|
to_regress_tokens.input_ids ==
|
|
self.llama_tokenizer.pad_token_id, -100)
|
|
|
|
empty_targets = (
|
|
torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
|
|
dtype=torch.long).to(image.device).fill_(
|
|
-100) # plus one for bos
|
|
)
|
|
empty_targets = empty_targets.repeat_interleave(seg_len, dim=0)
|
|
targets = torch.cat([empty_targets, targets], dim=1)
|
|
|
|
bos = torch.ones([batch_size, 1],
|
|
dtype=to_regress_tokens.input_ids.dtype,
|
|
device=to_regress_tokens.input_ids.device
|
|
) * self.llama_tokenizer.bos_token_id
|
|
bos_embeds = self.llama_model.model.embed_tokens(bos)
|
|
bos_embeds = bos_embeds.repeat_interleave(seg_len, dim=0)
|
|
img_embeds = img_embeds.repeat_interleave(seg_len, dim=0)
|
|
|
|
atts_bos = atts_img[:, :1]
|
|
atts_bos = atts_bos.repeat_interleave(seg_len, dim=0)
|
|
atts_img = atts_img.repeat_interleave(seg_len, dim=0)
|
|
|
|
to_regress_embeds = self.llama_model.model.embed_tokens(
|
|
to_regress_tokens.input_ids)
|
|
|
|
inputs_embeds = torch.cat(
|
|
[bos_embeds, img_embeds, to_regress_embeds], dim=1)
|
|
attention_mask = torch.cat(
|
|
[atts_bos, atts_img, to_regress_tokens.attention_mask],
|
|
dim=1)
|
|
|
|
with self.maybe_autocast():
|
|
outputs = self.llama_model(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
return_dict=True,
|
|
labels=targets,
|
|
reduction='none',
|
|
)
|
|
loss = outputs.loss
|
|
loss = loss.view(targets.size(0), -1).sum(1)
|
|
loss = loss.reshape(batch_size, seg_len)
|
|
losses.append(loss)
|
|
# losses of 4 choices
|
|
losses = torch.cat(losses, dim=-1)[0]
|
|
|
|
for i, data_sample in enumerate(data_samples):
|
|
data_sample.losses = losses
|
|
data_samples[i] = data_sample
|
|
return data_samples
|