OpenCompass/configs/eval_subjective_corev2.py
bittersweet1999 32b5948f4e
[Fix] add do sample demo for subjective dataset (#873)
* add do sample demo for subjective dataset

* fix strings

* format

---------

Co-authored-by: Leymore <zfz-960727@163.com>
2024-02-05 15:55:58 +08:00

116 lines
3.4 KiB
Python

from mmengine.config import read_base
with read_base():
from .datasets.subjective.subjective_cmp.subjective_corev2 import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import Corev2Summarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[
dict(role='SYSTEM', api_role='SYSTEM'),
],
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=500),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask),
),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_model = dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=2,
retry=20,
temperature=0,
)
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner, mode='m2n', max_task_size=500, base_models=[gpt4], compare_models=models
),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
quotatype='auto',
max_num_workers=256,
task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model),
),
)
summarizer = dict(type=Corev2Summarizer, match_method='smart')
work_dir = 'outputs/corev2/'