OpenCompass/configs/datasets/TheoremQA/TheoremQA_5shot_gen_6f0af8.py
Fengzhe Zhou 004ed79593
[Feature] Add TheoremQA with 5-shot (#1048)
* add TheoremQA with 5-shot

* cherry pick from add-huggingface-above-v4.33, good TheoremQA results
2024-04-22 15:22:04 +08:00

46 lines
1.6 KiB
Python

from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TheoremQADatasetV3, TheoremQA_postprocess_v3, TheoremQAEvaluatorV3
with read_base():
from .TheoremQA_few_shot_examples import examples
num_shot = 5
rounds = []
for index, (query, response) in enumerate(examples[:num_shot]):
if index == 0:
desc = "You are supposed to provide a solution to a given problem.\n\n"
else:
desc = ""
rounds += [
dict(role="HUMAN", prompt=f"{desc}Problem:\n{query}\nSolution:"),
dict(role="BOT", prompt=f"{response}")
]
rounds += [dict(role="HUMAN", prompt="Problem:\n{Question}\nSolution:")]
TheoremQA_reader_cfg = dict(input_columns=["Question", "Answer_type"], output_column="Answer", train_split="test", test_split="test")
TheoremQA_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=dict(round=rounds)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024, stopping_criteria=["Problem:", "Problem"]),
)
TheoremQA_eval_cfg = dict(
evaluator=dict(type=TheoremQAEvaluatorV3),
pred_postprocessor=dict(type=TheoremQA_postprocess_v3)
)
TheoremQA_datasets = [
dict(
abbr="TheoremQA",
type=TheoremQADatasetV3,
path="data/TheoremQA/theoremqa_test.json",
reader_cfg=TheoremQA_reader_cfg,
infer_cfg=TheoremQA_infer_cfg,
eval_cfg=TheoremQA_eval_cfg,
)
]