OpenCompass/configs/eval_with_model_dataset_combinations.py
2023-12-11 17:42:53 +08:00

44 lines
2.0 KiB
Python

from mmengine.config import read_base
with read_base():
from .models.qwen.hf_qwen_7b import models as hf_qwen_7b_base_models
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat_models
from .datasets.ceval.ceval_ppl_578f8d import ceval_datasets as base_ceval_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets as chat_ceval_datasets
from .internal.clusters.slurm import infer, eval
# from .clusters.slurm import infer_split as infer, eval
# from .clusters.slurm import infer_size as infer, eval
# from .clusters.slurm import infer_size_split as infer, eval
base_ceval_datasets = base_ceval_datasets[:1]
chat_ceval_datasets = chat_ceval_datasets[-1:]
# If you do not want to run all the combinations of models and datasets, you
# can specify the combinations you want to run here. This is useful when you
# deleberately want to skip some subset of the combinations.
# Models and datasets in different combinations are recommended to be disjoint
# (different `abbr` in model & dataset configs), as we haven't tested this case
# throughly.
model_dataset_combinations = [
dict(models=hf_qwen_7b_base_models, datasets=base_ceval_datasets),
dict(models=hf_qwen_7b_chat_models, datasets=chat_ceval_datasets),
# dict(models=[model_cfg1, ...], datasets=[dataset_cfg1, ...]),
]
# This union of models and datasets in model_dataset_combinations should be
# stored in the `models` and `datasets` variables below. Otherwise, modules
# like summarizer will miss out some information.
models = [*hf_qwen_7b_base_models, *hf_qwen_7b_chat_models]
datasets = [*base_ceval_datasets, *chat_ceval_datasets]
work_dir = './outputs/default/mdcomb/'
"""
dataset version metric mode qwen-7b-hf qwen-7b-chat-hf
---------------------- --------- -------- ------ ------------ -----------------
ceval-computer_network 9b9417 accuracy ppl 52.63 -
ceval-physician 6e277d accuracy gen - 59.18
"""