mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
65 lines
2.1 KiB
Python
65 lines
2.1 KiB
Python
from mmengine.config import read_base
|
|
from opencompass.models.openai_api import OpenAI
|
|
from opencompass.partitioners import SizePartitioner
|
|
from opencompass.runners import LocalRunner
|
|
from opencompass.tasks import OpenICLInferTask
|
|
from opencompass.models.lagent import LagentAgent
|
|
from opencompass.lagent.actions.python_interpreter import PythonInterpreter
|
|
from lagent import ReAct
|
|
from lagent.agents.react import ReActProtocol
|
|
|
|
with read_base():
|
|
from .datasets.gsm8k.gsm8k_agent_gen_be1606 import gsm8k_datasets
|
|
from .datasets.math.math_agent_gen_af2293 import math_datasets
|
|
from .datasets.MathBench.mathbench_agent_gen_568903 import mathbench_agent_datasets
|
|
from .summarizers.math_agent import summarizer
|
|
|
|
datasets = []
|
|
datasets += gsm8k_datasets
|
|
datasets += math_datasets
|
|
datasets += mathbench_agent_datasets
|
|
|
|
system_prompt = """You are a helpful assistant which use tools to solve mathematical reasoning questions. The code must be a function, and the function name must be 'solution'. For mathematics, please use code tool to calculate. The example format is as follows:
|
|
```
|
|
def solution():
|
|
variable_names_with_real_meaning = func(variable)
|
|
return variable_names_with_real_meaning
|
|
```"""
|
|
|
|
protocol = dict(
|
|
type=ReActProtocol,
|
|
action=dict(role='ACTION', begin='Tool:', end='\n'),
|
|
action_input=dict(role='ARGS', begin='Tool Input:', end='\n'),
|
|
finish=dict(role='FINISH', begin='FinalAnswer:', end='\n'),
|
|
call_protocol=system_prompt,
|
|
)
|
|
|
|
models = [
|
|
dict(
|
|
abbr='gpt-3.5-react',
|
|
type=LagentAgent,
|
|
agent_type=ReAct,
|
|
max_turn=3,
|
|
llm=dict(
|
|
type=OpenAI,
|
|
path='gpt-3.5-turbo',
|
|
key='ENV',
|
|
query_per_second=1,
|
|
max_seq_len=4096,
|
|
),
|
|
actions=[
|
|
dict(type=PythonInterpreter),
|
|
],
|
|
protocol=protocol,
|
|
batch_size=1,
|
|
),
|
|
]
|
|
|
|
infer = dict(
|
|
partitioner=dict(type=SizePartitioner, max_task_size=1000),
|
|
runner=dict(
|
|
type=LocalRunner,
|
|
max_num_workers=16,
|
|
task=dict(type=OpenICLInferTask)),
|
|
)
|