OpenCompass/configs/datasets/xiezhi/xiezhi_gen_b86cf5.py
2024-05-14 15:35:58 +08:00

51 lines
1.7 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import XiezhiDataset, XiezhiRetriever
from opencompass.utils.text_postprocessors import first_capital_postprocess
xiezhi_datasets = []
for split in ['spec_eng', 'spec_chn', 'inter_eng', 'inter_chn']:
if 'chn' in split:
q_hint, a_hint = '题目', '答案'
else:
q_hint, a_hint = 'Question', 'Answer'
xiezhi_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'labels'],
output_column='answer',
train_split='train',
test_split='test',
)
xiezhi_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(role='HUMAN', prompt=f'{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n{a_hint}: '),
dict(role='BOT', prompt='{answer}'),
]
),
ice_token='</E>',
),
retriever=dict(type=XiezhiRetriever, ice_num=3),
inferencer=dict(type=GenInferencer),
)
xiezhi_eval_cfg = dict(evaluator=dict(type=AccEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess))
xiezhi_datasets.append(
dict(
type=XiezhiDataset,
abbr=f'xiezhi-{split}',
path='./data/xiezhi/',
name='xiezhi_' + split,
reader_cfg=xiezhi_reader_cfg,
infer_cfg=xiezhi_infer_cfg,
eval_cfg=xiezhi_eval_cfg,
))