mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] support adv_glue dataset for adversarial robustness * reorg files * minor fix * minor fix * support prompt bench demo * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix
49 lines
2.4 KiB
Python
49 lines
2.4 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import AttackInferencer
|
|
from opencompass.datasets import SQuAD20Dataset, SQuAD20Evaluator
|
|
|
|
squad20_reader_cfg = dict(
|
|
input_columns=['context', 'question'],
|
|
output_column='answers')
|
|
|
|
original_prompt_list = [
|
|
"Based on the given context, provide the best possible answer. If there's no answer available in the context, respond with 'unanswerable'.",
|
|
"Identify the most relevant answer from the context. If it's not possible to find an answer, respond with 'unanswerable'.",
|
|
"Find the correct answer in the context provided. If an answer cannot be found, please respond with 'unanswerable'.",
|
|
"Please extract the most appropriate answer from the context. If an answer is not present, indicate 'unanswerable'.",
|
|
"Using the context, determine the most suitable answer. If the context doesn't contain the answer, respond with 'unanswerable'.",
|
|
"Locate the most accurate answer within the context. If the context doesn't provide an answer, respond with 'unanswerable'.",
|
|
"Please derive the most fitting answer from the context. If there isn't an answer in the context, respond with 'unanswerable'.",
|
|
"Discover the best answer based on the context. If the context doesn't include an answer, respond with 'unanswerable'.",
|
|
"From the context, provide the most precise answer. If the answer is not in the context, respond with 'unanswerable'.",
|
|
"Search the context for the most relevant answer. If the answer cannot be found, respond with 'unanswerable'.",
|
|
]
|
|
|
|
squad20_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
round=[
|
|
dict(role='HUMAN', prompt='{adv_prompt} {context}'),
|
|
dict(role='BOT', prompt='Answer:'),
|
|
], )),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=AttackInferencer, max_out_len=50,
|
|
original_prompt_list=original_prompt_list,
|
|
adv_key='adv_prompt',
|
|
metric_key='score'))
|
|
|
|
squad20_eval_cfg = dict(
|
|
evaluator=dict(type=SQuAD20Evaluator), pred_role='BOT')
|
|
|
|
squad20_datasets = [
|
|
dict(
|
|
type=SQuAD20Dataset,
|
|
abbr='squad_v2',
|
|
path='./data/SQuAD2.0/dev-v2.0.json',
|
|
reader_cfg=squad20_reader_cfg,
|
|
infer_cfg=squad20_infer_cfg,
|
|
eval_cfg=squad20_eval_cfg)
|
|
]
|