mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
190 lines
7.2 KiB
Python
190 lines
7.2 KiB
Python
"""PPL Inferencer."""
|
|
|
|
import os
|
|
from typing import List, Optional
|
|
|
|
import mmengine
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from opencompass.models.base import BaseModel
|
|
from opencompass.registry import ICL_INFERENCERS
|
|
|
|
from ..icl_prompt_template import PromptTemplate
|
|
from ..icl_retriever import BaseRetriever
|
|
from ..utils import get_logger
|
|
from .icl_base_inferencer import BaseInferencer, dump_results_dict
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
@ICL_INFERENCERS.register_module()
|
|
class MinKPercentInferencer(BaseInferencer):
|
|
"""PPLOnlyInferencer class to calculate PPL and PPL only, no choice is
|
|
made. This Inferencer is usually used along with AveragePPLEvaluator.
|
|
|
|
Attributes:
|
|
model (:obj:`BaseModel`, optional): The module to inference.
|
|
max_seq_len (:obj:`int`): Maximum number of tokenized words allowed by
|
|
the LM.
|
|
batch_size (:obj:`int`, optional): Batch size for the :obj:`DataLoader`
|
|
output_json_filepath (:obj:`str`, optional): File path for output
|
|
`JSON` file.
|
|
output_json_filename (:obj:`str`, optional): File name for output
|
|
`JSON` file.
|
|
save_every (:obj:`int`, optional): Save intermediate results every
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: BaseModel,
|
|
max_seq_len: Optional[int] = None,
|
|
batch_size: Optional[int] = 1,
|
|
output_json_filepath: Optional[str] = './icl_inference_output',
|
|
output_json_filename: Optional[str] = 'predictions',
|
|
save_every: Optional[int] = 1,
|
|
**kwargs) -> None:
|
|
super().__init__(
|
|
model=model,
|
|
max_seq_len=max_seq_len,
|
|
batch_size=batch_size,
|
|
output_json_filename=output_json_filename,
|
|
output_json_filepath=output_json_filepath,
|
|
**kwargs,
|
|
)
|
|
|
|
self.save_every = save_every
|
|
|
|
def inference(self,
|
|
retriever: BaseRetriever,
|
|
ice_template: Optional[PromptTemplate] = None,
|
|
prompt_template: Optional[PromptTemplate] = None,
|
|
output_json_filepath: Optional[str] = None,
|
|
output_json_filename: Optional[str] = None) -> List:
|
|
# 1. Preparation for output logs
|
|
output_handler = PPLOnlyInferencerOutputHandler()
|
|
|
|
if output_json_filepath is None:
|
|
output_json_filepath = self.output_json_filepath
|
|
if output_json_filename is None:
|
|
output_json_filename = self.output_json_filename
|
|
|
|
# 2. Get results of retrieval process
|
|
ice_idx_list = retriever.retrieve()
|
|
|
|
# 3. Generate prompts for testing input
|
|
prompt_list = self.get_generation_prompt_list_from_retriever_indices(
|
|
ice_idx_list,
|
|
retriever,
|
|
max_seq_len=self.max_seq_len,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
|
|
# 3.1 Fetch and zip prompt & gold answer if output column exists
|
|
ds_reader = retriever.dataset_reader
|
|
|
|
assert ds_reader.output_column is None, (
|
|
'PPLOnlyInferencer supports `output_column=None` only.')
|
|
|
|
# Create tmp json file for saving intermediate results and future
|
|
# resuming
|
|
index = 0
|
|
tmp_json_filepath = os.path.join(output_json_filepath,
|
|
'tmp_' + output_json_filename)
|
|
if os.path.exists(tmp_json_filepath):
|
|
# TODO: move resume to output handler
|
|
try:
|
|
tmp_result_dict = mmengine.load(tmp_json_filepath)
|
|
except Exception:
|
|
pass
|
|
else:
|
|
output_handler.results_dict = tmp_result_dict
|
|
index = len(tmp_result_dict)
|
|
|
|
# 4. Wrap prompts with Dataloader
|
|
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)
|
|
|
|
# 5. Inference for prompts in each batch
|
|
logger.info('Starting inference process...')
|
|
for datum in tqdm(dataloader, disable=not self.is_main_process):
|
|
entry = datum
|
|
# 5-1. Inference with local model
|
|
with torch.no_grad():
|
|
sub_inputs = self.model.parse_template(entry, mode='ppl')
|
|
minks = self.model.get_mink_percent(sub_inputs).tolist()
|
|
|
|
parsed_entries = self.model.parse_template(entry, mode='gen')
|
|
# 5-3. Save current output
|
|
for prompt, mink, in zip(parsed_entries, minks):
|
|
output_handler.save_results(prompt, mink, index)
|
|
index = index + 1
|
|
|
|
# 5-4. Save intermediate results
|
|
if (self.save_every is not None and index % self.save_every == 0
|
|
and self.is_main_process):
|
|
output_handler.write_to_json(output_json_filepath,
|
|
'tmp_' + output_json_filename)
|
|
|
|
# 6. Output
|
|
if self.is_main_process:
|
|
os.makedirs(output_json_filepath, exist_ok=True)
|
|
output_handler.write_to_json(output_json_filepath,
|
|
output_json_filename)
|
|
if os.path.exists(tmp_json_filepath):
|
|
os.remove(tmp_json_filepath)
|
|
|
|
return [
|
|
sample['mink'] for sample in output_handler.results_dict.values()
|
|
]
|
|
|
|
def get_generation_prompt_list_from_retriever_indices(
|
|
self,
|
|
ice_idx_list: List[List[int]],
|
|
retriever: BaseRetriever,
|
|
max_seq_len: Optional[int] = None,
|
|
ice_template: Optional[PromptTemplate] = None,
|
|
prompt_template: Optional[PromptTemplate] = None):
|
|
prompt_list = []
|
|
for idx, ice_idx in enumerate(ice_idx_list):
|
|
ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
|
|
prompt = retriever.generate_prompt_for_generate_task(
|
|
idx,
|
|
ice,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
if max_seq_len is not None:
|
|
prompt_token_num = self.model.get_token_len_from_template(
|
|
prompt, mode='gen')
|
|
while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
|
|
ice_idx = ice_idx[:-1]
|
|
ice = retriever.generate_ice(ice_idx,
|
|
ice_template=ice_template)
|
|
prompt = retriever.generate_prompt_for_generate_task(
|
|
idx,
|
|
ice,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
prompt_token_num = self.model.get_token_len_from_template(
|
|
prompt, mode='gen')
|
|
prompt_list.append(prompt)
|
|
return prompt_list
|
|
|
|
|
|
class PPLOnlyInferencerOutputHandler:
|
|
origin_prompt_dict = {}
|
|
output_dict = {}
|
|
results_dict = {}
|
|
|
|
def __init__(self) -> None:
|
|
self.results_dict = {}
|
|
|
|
def write_to_json(self, save_dir: str, filename: str):
|
|
"""Dump the result to a json file."""
|
|
dump_results_dict(self.results_dict, os.path.join(save_dir, filename))
|
|
|
|
def save_results(self, origin_prompt, mink, idx):
|
|
self.results_dict[str(idx)] = {
|
|
'origin_prompt': origin_prompt,
|
|
'mink': mink,
|
|
}
|