OpenCompass/opencompass/configs/datasets/infinitebench/infinitebenchcoderun/infinitebench_coderun_gen_1a76bd.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

44 lines
1.7 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.datasets import InfiniteBenchcoderunDataset
InfiniteBench_coderun_reader_cfg = dict(
input_columns=['context', 'func', 'func_call'],
output_column='answer',
)
InfiniteBench_coderun_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'),
],
round=[
dict(role='HUMAN', prompt='Following is a set of Python functions. There is a function called named {func}.\n\n{context}\n\nPlease give me the exact number of the return value of {func_call}. Be concise. Your response must end with the final returned value.'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=5)
)
InfiniteBench_coderun_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
pred_role='BOT'
)
InfiniteBench_coderun_datasets = [
dict(
type=InfiniteBenchcoderunDataset,
abbr='InfiniteBench_coderun',
path='./data/InfiniteBench/code_run.jsonl',
reader_cfg=InfiniteBench_coderun_reader_cfg,
infer_cfg=InfiniteBench_coderun_infer_cfg,
eval_cfg=InfiniteBench_coderun_eval_cfg)
]