OpenCompass/examples/eval_code_passk_repeat_dataset.py
Linchen Xiao a6193b4c02
[Refactor] Code refactoarization (#1831)
* Update

* fix lint

* update

* fix lint
2025-01-20 19:17:38 +08:00

59 lines
1.9 KiB
Python

# This config is used for pass@k evaluation with dataset repetition
# That model cannot generate multiple response for single input
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM
from opencompass.partitioners import SizePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from opencompass.configs.datasets.humaneval.humaneval_repeat10_gen_8e312c import \
humaneval_datasets
from opencompass.configs.datasets.mbpp.deprecated_mbpp_repeat10_gen_1e1056 import \
mbpp_datasets
from opencompass.configs.datasets.mbpp.deprecated_sanitized_mbpp_repeat10_gen_1e1056 import \
sanitized_mbpp_datasets
datasets = []
datasets += humaneval_datasets
datasets += mbpp_datasets
datasets += sanitized_mbpp_datasets
_meta_template = dict(round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
], )
models = [
dict(
abbr='internlm-chat-7b-hf-v11',
type=HuggingFaceCausalLM,
path='internlm/internlm-chat-7b-v1_1',
tokenizer_path='internlm/internlm-chat-7b-v1_1',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_seq_len=2048,
meta_template=_meta_template,
model_kwargs=dict(trust_remote_code=True, device_map='auto'),
generation_kwargs=dict(
do_sample=True,
top_p=0.95,
temperature=0.8,
),
run_cfg=dict(num_gpus=1, num_procs=1),
batch_size=8,
)
]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=600),
runner=dict(type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLInferTask)),
)