from mmengine.config import read_base with read_base(): # Import models from opencompass.configs.models.hf_llama.hf_llama3_8b_instruct import models as llama3_8b_instruct_model from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import models as internlm2_chat_7b_model # Import datasets from opencompass.configs.datasets.MathBench.mathbench_gen import mathbench_datasets # Import summarizers for display results from opencompass.configs.summarizers.groups.mathbench_v1_2024 import summarizer # Grouped results for MathBench-A and MathBench-T separately # from opencompass.configs.summarizers.mathbench_v1 import summarizer # Detailed results for every sub-dataset # from opencompass.configs.summarizers.groups.mathbench_v1_2024_lang import summarizer # Grouped results for bilingual results datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], []) models = sum([v for k, v in locals().items() if k.endswith('_model')], []) from opencompass.runners import LocalRunner from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask eval = dict( partitioner=dict(type=NaivePartitioner, n=8), runner=dict( type=LocalRunner, max_num_workers=256, task=dict(type=OpenICLEvalTask) ), ) infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=4), runner=dict( type=LocalRunner, max_num_workers=256, task=dict(type=OpenICLInferTask) ), ) work_dir = './outputs/mathbench_results'