from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccContaminationEvaluator from opencompass.datasets import ARCDatasetClean as ARCDataset ARC_c_reader_cfg = dict( input_columns=['question', 'textA', 'textB', 'textC', 'textD'], output_column='answerKey') ARC_c_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 'A': dict( round=[ dict(role='HUMAN', prompt='Question: {question}\nAnswer: '), dict(role='BOT', prompt='{textA}') ], ), 'B': dict( round=[ dict(role='HUMAN', prompt='Question: {question}\nAnswer: '), dict(role='BOT', prompt='{textB}') ], ), 'C': dict( round=[ dict(role='HUMAN', prompt='Question: {question}\nAnswer: '), dict(role='BOT', prompt='{textC}') ], ), 'D': dict( round=[ dict(role='HUMAN', prompt='Question: {question}\nAnswer: '), dict(role='BOT', prompt='{textD}') ], ), }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) ARC_c_eval_cfg = dict(evaluator=dict(type=AccContaminationEvaluator), analyze_contamination=True) ARC_c_datasets = [ dict( type=ARCDataset, abbr='ARC-c-test', path='opencompass/ai2_arc-test', name='ARC-Challenge', reader_cfg=ARC_c_reader_cfg, infer_cfg=ARC_c_infer_cfg, eval_cfg=ARC_c_eval_cfg) ]