from mmengine.config import read_base from opencompass.models.xunfei_api import XunFei from opencompass.partitioners import NaivePartitioner from opencompass.runners.local_api import LocalAPIRunner from opencompass.tasks import OpenICLInferTask with read_base(): # from opencompass.configs.datasets.collections.chat_medium import datasets from opencompass.configs.summarizers.medium import summarizer from opencompass.configs.datasets.ceval.ceval_gen import ceval_datasets datasets = [ *ceval_datasets, ] models = [ dict( abbr='Spark-v1-1', type=XunFei, appid='xxxx', path='ws://spark-api.xf-yun.com/v1.1/chat', api_secret = 'xxxxxxx', api_key = 'xxxxxxx', query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=8), dict( abbr='Spark-v3-1', type=XunFei, appid='xxxx', domain='generalv3', path='ws://spark-api.xf-yun.com/v3.1/chat', api_secret = 'xxxxxxxx', api_key = 'xxxxxxxxx', query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=8), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalAPIRunner, max_num_workers=2, concurrent_users=2, task=dict(type=OpenICLInferTask)), ) work_dir = 'outputs/api_xunfei/'