from mmengine.config import read_base from opencompass.models.lmdeploy_tis import LmdeployTisModel with read_base(): # choose a list of datasets from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from opencompass.configs.datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets from opencompass.configs.datasets.race.race_gen_69ee4f import race_datasets from opencompass.configs.datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from opencompass.configs.summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) meta_template = dict( round=[ dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'), dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True), ], eos_token_id=92542 ) models = [ dict( type=LmdeployTisModel, abbr='internlm-chat-20b-lmdeploy-tis', path='internlm/internlm-chat-20b', tis_addr='0.0.0.0:33337', max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='<|im_end|>', ) ]