from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets import AlignmentBenchDataset from mmengine.config import read_base subjective_reader_cfg = dict( input_columns=['question', 'capability', 'prefix', 'suffix'], output_column='judge', ) subjective_all_sets = [ "alignment_bench", ] data_path ="data/subjective/alignment_bench" alignment_bench_config_path = "data/subjective/alignment_bench/" alignment_bench_config_name = 'config/multi-dimension' subjective_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt="{question}" ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt = "{prefix}[助手的答案开始]\n{prediction}\n[助手的答案结束]\n" ), ]), ), ), pred_role="BOT", ) subjective_datasets.append( dict( abbr=f"{_name}", type=AlignmentBenchDataset, path=data_path, name=_name, alignment_bench_config_path=alignment_bench_config_path, alignment_bench_config_name=alignment_bench_config_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg ))