from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import hellaswagDatasetwithICE from opencompass.utils.text_postprocessors import first_capital_postprocess hellaswag_reader_cfg = dict( input_columns=["ctx", "A", "B", "C", "D"], output_column="label", train_split="train", test_split="val", ) hint = "Continue the following text without adding any additional information or formatting:" question_and_options = "{ctx}\nA) {A}\nB) {B}\nC) {C}\nD) {D}\nWhat is the right option?" hellaswag_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template={answer: f'{question_and_options}\n{answer}\n' for answer in ["A", "B", "C", "D"]}, ), prompt_template=dict( type=PromptTemplate, template={answer: f"{hint}\n{question_and_options}\n{answer}" for answer in ["A", "B", "C", "D"]}, ice_token="", ), retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))), inferencer=dict(type=PPLInferencer), ) hellaswag_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_capital_postprocess), ) hellaswag_datasets = [ dict( abbr="hellaswag", type=hellaswagDatasetwithICE, path="./data/hellaswag/", reader_cfg=hellaswag_reader_cfg, infer_cfg=hellaswag_infer_cfg, eval_cfg=hellaswag_eval_cfg, ) ]