# flake8: noqa # yapf: disable import copy import os import os.path as osp import re from collections import defaultdict from datetime import datetime from itertools import product import mmengine import pandas as pd from mmengine import ConfigDict from tabulate import tabulate from opencompass.partitioners.sub_naive import remove_duplicate_pairs from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg def model_abbr_from_cfg_used_in_summarizer(model): if model.get('summarizer_abbr', None): return model['summarizer_abbr'] else: return model_abbr_from_cfg(model) def post_process_compass_arena(s): if result := re.findall(r'(?:选择:|Choice: )\[\[([ABC])\]\]', s): return result[0] else: return None def get_outdir(cfg, time_str): """Get out put path. Args: cfg (ConfigDict): The running config. time_str (str): Current time. """ work_dir = cfg['work_dir'] output_path = osp.join(work_dir, 'summary', f'summary_{time_str}.txt') output_dir = osp.join(osp.split(output_path)[0], f'{time_str}') mmengine.mkdir_or_exist(output_dir) results_folder = osp.join(work_dir, 'results') return output_dir, results_folder def get_judgeanswer_and_reference(dataset, subdir_path, post_process): """Extract judgements (scores) and references. Args: dataset (ConfigDict): Dataset config. subdir_path (str): Model path in results dir. post_process (function): The pre-defined extract function. """ dataset_abbr = dataset_abbr_from_cfg(dataset) filename = osp.join(subdir_path, dataset_abbr + '.json') partial_filename = osp.join(subdir_path, dataset_abbr + '_0.json') if osp.exists(osp.realpath(filename)): result = mmengine.load(filename) elif osp.exists(osp.realpath(partial_filename)): filename = partial_filename result = {} i = 1 partial_dict_flag = 0 while osp.exists(osp.realpath(filename)): res = mmengine.load(filename) for k, v in res.items(): result[partial_dict_flag] = v partial_dict_flag += 1 filename = osp.join(subdir_path, dataset_abbr + '_' + str(i) + '.json') i += 1 else: result = {} if len(result) == 0: print('*' * 100) print('There are no results for ' + filename + ' or ' + partial_filename) print('*' * 100) assert len(result) > 0 judged_answers = [] references = [] result_items = [] for k, v in result.items(): processed_judge = post_process(v['prediction']) if processed_judge is not None: judged_answers.append(processed_judge) references.append(v['gold']) result_items.append(v) # else: # print(v['prediction']) # print('-' * 128) if len(judged_answers) != len(result): print( f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!' ) if len(judged_answers) == 0: print('*' * 100) print( 'There are no extracted judgements, please change your judge model or check your prompt!!!' ) print('*' * 100) assert len(judged_answers) > 0 return judged_answers, references, result_items def check_position_bias(judged_answers, references, banned_choice=['C']): """Check position bias for judgellm's judgement. Args: judged_answers: The successfully extracted judgement. references: The references contains original question, which is used to located the same question for different position judgement. """ position_bias_flag = 0 position_bias_dict = {} for judge, ref in zip(judged_answers, references): question = ref['question'] question_hash = hash(question) if question_hash not in position_bias_dict: position_bias_dict[question_hash] = { 'question': question, 'judge': judge } else: first_judge = position_bias_dict[question_hash]['judge'] if judge == first_judge and first_judge not in banned_choice and judge not in banned_choice: # If second choice is same with first choice, there has position bias. position_bias_flag += 1 return position_bias_flag def count_chinese_characters(text): words = re.findall(r'[\u4e00-\u9fff]', text) return len(words) def count_english_words(text): words = re.findall(r'\b[a-zA-Z]+\b', text) return len(words) class CompassBenchTHSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='general', check_pos_bias=True, summary_type='single', word_count_threshold=None) -> None: self.tasks = [] self.cfg = config self.base_models = self.cfg['eval']['partitioner']['base_models'] self.compare_models = self.cfg['eval']['partitioner']['compare_models'] self.judge_models = self.cfg.get('judge_models', None) self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None) self.judge_type = judge_type assert self.judge_type in ['general'] self.judge_map = {'general': post_process_compass_arena} self.judge_function = self.judge_map[self.judge_type] self.check_pos_bias = check_pos_bias self.summary_type = summary_type self.word_count_threshold = word_count_threshold def get_score(self, time_str): output_dir, results_folder = get_outdir(self.cfg, time_str) model_combinations = list(product(self.base_models, self.compare_models)) unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]]) if self.meta_judge_model is not None: self.judge_models.append(self.meta_judge_model) scores = {} for idx, judge_model_cfg in enumerate(self.judge_models): judge_model = model_abbr_from_cfg(judge_model_cfg) for dataset in self.cfg['datasets']: dataset_abbr = dataset_abbr_from_cfg(dataset) for model_pair in unique_combinations: model1 = model_pair[0]['abbr'] model2 = model_pair[1]['abbr'] if idx == len(self.judge_models): subdir = model1 + '_' + model2 + '_summarized-by--' + judge_model else: subdir = model1 + '_' + model2 + '_judged-by--' + judge_model subdir_path = os.path.join(results_folder, subdir) if not os.path.isdir(subdir_path): print(subdir_path + ' is not exist! please check!') continue judged_answers, references, result_items = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function) if self.check_pos_bias: bias_num = check_position_bias(judged_answers, references) else: bias_num = 0 win_model1 = defaultdict(float) win_model2 = defaultdict(float) categories = defaultdict(float) difficulties = defaultdict(float) languages = defaultdict(float) model1 = references[0]['answer1'] model2 = references[0]['answer2'] for prediction, reference, result_item in zip(judged_answers, references, result_items): categories[dataset_abbr] += 1 categories[reference['category']] += 1 difficulties['Level-' + str(reference['level'])] += 1 languages['Lan-' + reference['lan']] += 1 if prediction == 'A': if reference['answer1'] == model1: score_1, score_2 = 1, 0 else: score_1, score_2 = 0, 1 elif prediction == 'B': if reference['answer1'] == model1: score_1, score_2 = 0, 1 else: score_1, score_2 = 1, 0 elif prediction == 'C': if self.summary_type == 'half_add': score_1, score_2 = 0.5, 0.5 else: score_1, score_2 = 0, 0 # 进行分数修正 if self.word_count_threshold is not None: try: if reference['lan'] == 'zh': answer1 = re.search(r'\[回答1开始\](.*)\[回答1结束\]', result_item['origin_prompt'][0]['prompt'], re.DOTALL | re.MULTILINE).group(1).strip() answer2 = re.search(r'\[回答2开始\](.*)\[回答2结束\]', result_item['origin_prompt'][0]['prompt'], re.DOTALL | re.MULTILINE).group(1).strip() else: answer1 = re.search(r'\[Response 1 Start\](.*)\[Response 1 End\]', result_item['origin_prompt'][0]['prompt'], re.DOTALL | re.MULTILINE).group(1).strip() answer2 = re.search(r'\[Response 2 Start\](.*)\[Response 2 End\]', result_item['origin_prompt'][0]['prompt'], re.DOTALL | re.MULTILINE).group(1).strip() word_count1 = count_chinese_characters(answer1) + count_english_words(answer1) word_count2 = count_chinese_characters(answer2) + count_english_words(answer2) if score_1 == 1 and score_2 == 0 and word_count1 - word_count2 > self.word_count_threshold: score_1, score_2 = 0.5, 0.5 elif score_1 == 0 and score_2 == 1 and word_count2 - word_count1 > self.word_count_threshold: score_1, score_2 = 0.5, 0.5 except Exception as e: print(e) from IPython import embed; embed(); exit() win_model1[reference['category']] += score_1 win_model1[dataset_abbr] += score_1 win_model1['Level-' + str(reference['level'])] += score_1 win_model1['Lan-' + reference['lan']] += score_1 win_model2[reference['category']] += score_2 win_model2[dataset_abbr] += score_2 win_model2['Level-' + str(reference['level'])] += score_2 win_model2['Lan-' + reference['lan']] += score_2 for category in categories: win_model1[category] = win_model1[category] / categories[category] * 100 win_model1[category] = round(win_model1[category], 2) win_model2[category] = win_model2[category] / categories[category] * 100 win_model2[category] = round(win_model2[category], 2) win_model1['position_bias'] = bias_num win_model2['position_bias'] = bias_num for difficulty in difficulties: win_model1[difficulty] = win_model1[difficulty] / difficulties[difficulty] * 100 win_model2[difficulty] = win_model2[difficulty] / difficulties[difficulty] * 100 for language in languages: win_model1[language] = win_model1[language] / languages[language] * 100 win_model2[language] = win_model2[language] / languages[language] * 100 if judge_model not in scores: scores[judge_model] = {} if dataset_abbr not in scores[judge_model]: scores[judge_model][dataset_abbr] = {} scores[judge_model][dataset_abbr][model2] = win_model2 return scores, difficulties, languages def summarize( self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'), ): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ scores, difficulties, languages = self.get_score(time_str) # scores['win_' + model1] = win_model1 output_dir, results_folder = get_outdir(self.cfg, time_str) all_judge_file_list = [] for idx, judge_model in enumerate(self.judge_models): judge_abbr = model_abbr_from_cfg(judge_model) for dataset in self.cfg['datasets']: dataset_abbr = dataset_abbr_from_cfg(dataset) summarizer_model_abbrs = [model_abbr_from_cfg_used_in_summarizer(i) for i in self.compare_models] one_column = list(scores[judge_abbr][dataset_abbr].values())[0] detail_headers = [i for i in one_column.keys() if i not in [dataset_abbr, 'position_bias'] and i not in difficulties and i not in languages] row_headers = [dataset_abbr, 'position_bias'] for difficulty in difficulties: row_headers += [difficulty] for language in languages: row_headers += [language] row_headers += detail_headers headers = [''] + summarizer_model_abbrs table = [] for row_header in row_headers: row = [row_header] for model_cfg in self.compare_models: model_abbr = model_abbr_from_cfg(model_cfg) s = scores[judge_abbr][dataset_abbr][model_abbr].get(row_header, '') if isinstance(s, float): s = f'{s:.2f}' if isinstance(s, int): s = str(s) row.append(s) table.append(row) txt = tabulate(table, headers=headers) # print(txt) if idx == len(self.judge_models): output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv') else: output_filename = osp.join(output_dir, 'judged-by--' + judge_abbr + '-' + dataset_abbr + '-report.csv') with open(output_filename, 'w') as f: f.write(','.join(headers) + '\n') for line in table: f.write(','.join(line) + '\n') print(output_filename) # print(output_filename) all_judge_file_list.append(output_filename) dfs = [pd.read_csv(file) for file in all_judge_file_list] average_df = copy.deepcopy(dfs[0]) for col in dfs[0].columns[1:]: for i in range(1, len(dfs[0])): average_df[col][i] = round(sum(df[col][i] for df in dfs) / len(dfs), 2) average_csv_path = osp.join(output_dir, 'Averaged-' + dataset_abbr + '-report.csv') average_df.to_csv(average_csv_path, index=False) print(average_csv_path)