from mmengine.config import read_base with read_base(): from .datasets.subjectivity_cmp.subjectivity_cmp import subjectivity_datasets from .summarizers.subjective import summarizer datasets = [*subjectivity_datasets] from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.runners import LocalRunner from opencompass.tasks.subjective_eval import SubjectiveEvalTask _meta_template = dict( round=[ dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'), dict( role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True), ], ) _meta_template2 = dict( round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], ) models = [ dict( type=HuggingFace, abbr='chatglm2-6b-hf', path='THUDM/chatglm2-6b', tokenizer_path='THUDM/chatglm2-6b', tokenizer_kwargs=dict( padding_side='left', truncation_side='left', trust_remote_code=True, revision='b1502f4f75c71499a3d566b14463edd62620ce9f'), max_out_len=100, max_seq_len=2048, batch_size=8, model_kwargs=dict( trust_remote_code=True, device_map='auto', revision='b1502f4f75c71499a3d566b14463edd62620ce9f'), run_cfg=dict(num_gpus=1, num_procs=1), ), dict( type=HuggingFaceCausalLM, abbr='qwen-7b-chat-hf', path="/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat", tokenizer_path='/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat', tokenizer_kwargs=dict( padding_side='left', truncation_side='left', trust_remote_code=True, use_fast=False, ), pad_token_id=151643, max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=_meta_template, model_kwargs=dict(device_map='auto', trust_remote_code=True), run_cfg=dict(num_gpus=1, num_procs=1), ), dict( type=HuggingFaceCausalLM, abbr='internlm-chat-7b-hf', path="internlm/internlm-chat-7b", tokenizer_path='internlm/internlm-chat-7b', tokenizer_kwargs=dict( padding_side='left', truncation_side='left', use_fast=False, trust_remote_code=True, revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"), max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=_meta_template2, model_kwargs=dict( trust_remote_code=True, device_map='auto', revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"), run_cfg=dict(num_gpus=1, num_procs=1), ) ] api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True) ], reserved_roles=[ dict(role='SYSTEM', api_role='SYSTEM'), ], ) eval = dict( partitioner=dict( type=SubjectiveNaivePartitioner, mode='all', # 新参数 ), runner=dict( type=LocalRunner, max_num_workers=2, # 支持并行比较 task=dict( type=SubjectiveEvalTask, # 新 task,用来读入一对 model 的输入 judge_cfg=dict( abbr='GPT4', type=OpenAI, path='gpt-4-0613', key='ENV', meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=2), )), )