from mmengine.config import read_base from opencompass.models.turbomind import TurboMindModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets from .datasets.race.race_gen_69ee4f import race_datasets from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) meta_template = dict( round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) # config for internlm-chat-7b # models = [ # dict( # type=TurboMindModel, # abbr='internlm-chat-7b-turbomind', # path="./turbomind", # max_out_len=100, # max_seq_len=2048, # batch_size=32, # concurrency=32, # meta_template=meta_template, # run_cfg=dict(num_gpus=1, num_procs=1), # ) # ] # config for internlm-chat-7b-w4 model # models = [ # dict( # type=TurboMindModel, # abbr='internlm-chat-7b-w4-turbomind', # path="./turbomind", # max_out_len=100, # max_seq_len=2048, # batch_size=32, # concurrency=32, # meta_template=meta_template, # run_cfg=dict(num_gpus=1, num_procs=1), # ) # ] # config for internlm-chat-7b-w4kv8 model # models = [ # dict( # type=TurboMindModel, # abbr='internlm-chat-7b-w4kv8-turbomind', # path="./turbomind", # max_out_len=100, # max_seq_len=2048, # batch_size=32, # concurrency=32, # meta_template=meta_template, # run_cfg=dict(num_gpus=1, num_procs=1), # ) # ] # config for internlm-chat-20b # models = [ # dict( # type=TurboMindModel, # abbr='internlm-chat-20b-turbomind', # path="./turbomind", # max_out_len=100, # max_seq_len=2048, # batch_size=8, # concurrency=8, # meta_template=meta_template, # run_cfg=dict(num_gpus=1, num_procs=1), # ) # ] # config for internlm-chat-20b-w4 model models = [ dict( type=TurboMindModel, abbr='internlm-chat-20b-w4-turbomind', path="./turbomind", max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=16, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) ] # config for internlm-chat-20b-w4kv8 model # models = [ # dict( # type=TurboMindModel, # abbr='internlm-chat-20b-w4kv8-turbomind', # path="./turbomind", # max_out_len=100, # max_seq_len=2048, # batch_size=16, # concurrency=16, # meta_template=meta_template, # run_cfg=dict(num_gpus=1, num_procs=1), # ) # ]