from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets import MTBench101Dataset, mtbench101_postprocess subjective_reader_cfg = dict( input_columns=['dialogue','task','multi_id','turn_id','system_prompt','prompt_template'], output_column='judge', ) subjective_all_sets = [ 'mtbench101', ] data_path ='data/subjective/' mtbench101_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template="""{dialogue}""", ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=4096, infer_mode='last'), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict( role='SYSTEM', fallback_role='HUMAN', prompt='{system_prompt}') ], round=[ dict( role='HUMAN', prompt = '{prompt_template}' ), ]), ), dict_postprocessor=dict(type=mtbench101_postprocess), ), pred_role='BOT', ) mtbench101_datasets.append( dict( abbr=f'{_name}', type=MTBench101Dataset, path=data_path, name=_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg, mode='singlescore', ))