# THIS SHALL ALSO BE DEPRECATED from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import xHumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2, HumanEvalPlusEvaluator humaneval_reader_cfg = dict( input_columns=['prompt'], output_column='task_id', train_split='test') # TODO: allow empty output-column humaneval_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='Complete the following python code:\n{prompt}'), ])), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512)) humaneval_eval_cfg = dict( evaluator=dict(type=HumanEvalEvaluator), pred_role='BOT', k=[1, 10, 100], # the parameter only for humaneval pred_postprocessor=dict(type=humaneval_postprocess_v2), ) # humaneval_datasets = [ # dict( # abbr='openai_humaneval', # type=xHumanevalDataset, # path='opencompass/humaneval', # reader_cfg=humaneval_reader_cfg, # infer_cfg=humaneval_infer_cfg, # eval_cfg=humaneval_eval_cfg) # ] LANGS = ['ar'] humaneval_datasets = [] for lang in LANGS: humaneval_datasets.append( dict( abbr=f'humaneval_{lang}', type=xHumanevalDataset, path=f'data/xhumaneval_plus/humaneval_plus_gpt4o_{lang}.jsonl', reader_cfg=humaneval_reader_cfg, infer_cfg=humaneval_infer_cfg, eval_cfg=humaneval_eval_cfg) )