import os import json from dotenv import load_dotenv import argparse import yaml load_dotenv() RESULTS_STATION_PATH = os.getenv("RESULTS_STATION_PATH") data_file_map = { 'ifeval': 'IFEval', } data_prefix_map = { } with open('dataset-index.yml', 'r') as f1: data_list = yaml.load(f1, Loader=yaml.FullLoader) f1.close() data_searchable_list = [next(iter(i.keys())) for i in data_list] def parse_args(): parser = argparse.ArgumentParser(description='connect to results station') parser.add_argument('-sp', '--station-path', type=str, default=None, help='if no env path, use this.') parser.add_argument('-p', '--my-path', type=str, default=None, help='your operation path.') parser.add_argument('-op', '--operation', type=str, default='d', help='u:update, d:download, ls: show dataset and model options') parser.add_argument('-d', '--dataset', type=str, default='mmlu_pro', help='target dataset name') parser.add_argument('-m', '--model', type=str, default='deepseek-v2_5-turbomind', help='target model name') # parser.add_argument('-all', '--all-transfer', action='store_true', default=False, help='transfer all files under the path') args = parser.parse_args() return args def read_json(path): results = [] for i in path: with open(i, 'r') as f: results.append(json.load(f)) f.close() return results def load_json_files_by_prefix(prefix, target_path): if prefix in data_file_map.keys(): prefix = data_file_map[prefix] result_dict = {} for filename in os.listdir(target_path): if filename.startswith(prefix) and filename.endswith(".json"): file_path = os.path.join(target_path, filename) with open(file_path, "r", encoding="utf-8") as file: json_data = json.load(file) result_dict[os.path.splitext(filename)[0]] = json_data return result_dict def main(path, mypath, args): if args.dataset not in data_searchable_list: raise ValueError('invalid dataset input!') update_path = path + args.dataset if path[-1] == '/' else path + '/' + args.dataset update_filename = args.dataset + '_' + args.model + '.json' update_goal = update_path + '/' + update_filename # update from your path to result station if args.operation == 'u': mypath_prediction = (mypath + 'predictions/' + args.model) if mypath[-1] == '/' else (mypath + '/predictions/' + args.model) mypath_result = (mypath + 'results/' + args.model) if mypath[-1] == '/' else (mypath + '/results/' + args.model) if os.path.exists(mypath_prediction) and os.path.exists(mypath_result): result_dict = load_json_files_by_prefix(args.dataset, mypath_result) prediction_list = [] for i in result_dict.keys(): prediction_dict = load_json_files_by_prefix(i, mypath_prediction) for j in range(len(prediction_dict)): for k in prediction_dict[i + '_' + str(j)].keys(): prediction_list.append( { 'prediction': prediction_dict[i + '_' + str(j)][k], 'sub_category': i } ) update_dict = { 'predictions': prediction_list, 'results': result_dict, } if not os.path.exists(update_path): os.makedirs(update_path) if os.path.exists(update_goal): input("This result exists! Press any key to continue...") with open(update_goal, 'w', encoding="utf-8") as f: json.dump(update_dict, f, ensure_ascii=False, indent=4) f.close() # read from result station to your path if args.operation == 'd': if not os.path.exists(update_goal): raise ValueError('This result does not exist!') with open(update_goal, 'r', encoding="utf-8") as f: results = json.load(f) f.close() legal_key_set = {'predictions', 'results'} if set(results.keys()) == legal_key_set and isinstance(results['predictions'], list) and isinstance(results['results'], dict): print("Successfully download result from station! you've got a dict with format as follows: \n content['precitions', 'results']") else: raise ValueError('illegal format of the result!') save_path = args.my_path if args.my_path[-1] == '/' else args.my_path + '/' save_path += args.dataset + '/' if not os.path.exists(save_path): os.makedirs(save_path) with open(save_path + update_filename, 'w', encoding="utf-8") as f: json.dump(results, f, ensure_ascii=False, indent=4) f.close() if __name__ == '__main__': args = parse_args() if args.operation == 'ls': print("----DATASET LIST----") print(data_searchable_list) print("----MODEL LIST----") else: if RESULTS_STATION_PATH is not None: path = RESULTS_STATION_PATH else: path = args.station_path if path is None: raise ValueError('Please appoint the path of results station!') if not os.path.exists(path): raise ValueError('Not a valid path of results station!') mypath = args.my_path if mypath is None: raise ValueError('Please appoint your own path!') if not os.path.exists(mypath): raise ValueError('Not a valid path of your own path!') main(path, mypath, args)