from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import ChatInferencer from opencompass.openicl.icl_evaluator import TEvalEvaluator from opencompass.datasets import teval_postprocess, TEvalDataset teval_subject_mapping = { 'instruct': ['instruct_v1'], 'plan': ['plan_json_v1', 'plan_str_v1'], 'review': ['review_str_v1'], 'reason_retrieve_understand': ['reason_retrieve_understand_json_v1'], 'reason': ['reason_str_v1'], 'retrieve': ['retrieve_str_v1'], 'understand': ['understand_str_v1'], } teval_reader_cfg = dict(input_columns=['prompt'], output_column='ground_truth') teval_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='{prompt}'), ], ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=ChatInferencer), ) teval_all_sets = list(teval_subject_mapping.keys()) teval_datasets = [] for _name in teval_all_sets: teval_eval_cfg = dict( evaluator=dict(type=TEvalEvaluator, subset=_name), pred_postprocessor=dict(type=teval_postprocess), num_gpus=1, ) for subset in teval_subject_mapping[_name]: teval_datasets.append( dict( abbr='teval-' + subset, type=TEvalDataset, path='./data/teval/EN', name=subset, reader_cfg=teval_reader_cfg, infer_cfg=teval_infer_cfg, eval_cfg=teval_eval_cfg, ) )