from mmengine.config import read_base from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2 with read_base(): from .math_4shot_example_from_google_research import prompt math_reader_cfg = dict(input_columns=['problem'], output_column='solution') math_infer_cfg = dict( prompt_template=dict(type=PromptTemplate, template=prompt + '\n\nProblem:\n{problem}\nSolution:'), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=1024, stopping_criteria=['Problem'])) # postprocess v2 math_eval_cfg = dict( evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2)) math_datasets = [ dict( type=MATHDataset, abbr='math', path='opencompass/math', reader_cfg=math_reader_cfg, infer_cfg=math_infer_cfg, eval_cfg=math_eval_cfg) ]