from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import InfiniteBenchenqaDataset, LongBenchF1Evaluator InfiniteBench_enqa_reader_cfg = dict( input_columns=['context', 'question'], output_column='answer', ) InfiniteBench_enqa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='Read the book below and answer a question.\n\n{context}\n\nQuestion: {question}\n\nBe very concise.'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=40) ) InfiniteBench_enqa_eval_cfg = dict( evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT' ) InfiniteBench_enqa_datasets = [ dict( type=InfiniteBenchenqaDataset, abbr='InfiniteBench_enqa', path='./data/InfiniteBench/longbook_qa_eng.jsonl', reader_cfg=InfiniteBench_enqa_reader_cfg, infer_cfg=InfiniteBench_enqa_infer_cfg, eval_cfg=InfiniteBench_enqa_eval_cfg) ]