from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.utils.text_postprocessors import first_option_postprocess from opencompass.datasets import InfiniteBenchenmcDataset InfiniteBench_enmc_reader_cfg = dict( input_columns=['context', 'question', 'option_A', 'option_B', 'option_C', 'option_D'], output_column='answer', ) InfiniteBench_enmc_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='Read the book and answer the question.\n\n{context}\n\nQuestion: {question}\n\nOnly one of the following options is correct, tell me the answer using one single letter (A, B, C, or D). Don\'t say anything else.\nA. {option_A}\nB. {option_B}\nC. {option_C}\nD. {option_D}'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=40) ) InfiniteBench_enmc_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'), pred_role='BOT' ) InfiniteBench_enmc_datasets = [ dict( type=InfiniteBenchenmcDataset, abbr='InfiniteBench_enmc', path='./data/InfiniteBench/longbook_choice_eng.jsonl', reader_cfg=InfiniteBench_enmc_reader_cfg, infer_cfg=InfiniteBench_enmc_infer_cfg, eval_cfg=InfiniteBench_enmc_eval_cfg) ]