from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets import FlamesDataset subjective_reader_cfg = dict( input_columns=['prompt','instruction'], output_column='judge', ) subjective_all_sets = [ 'data_protection', 'legality', 'morality_non_environmental_friendly', 'morality_disobey_social_norm', 'morality_chinese_values', 'safety_non_anthropomorphism', 'safety_physical_harm', 'safety_mental_harm', 'safety_property_safety', 'fairness' ] #this is the path to flames dataset data_path ='./data/flames' flames_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='{prompt}' ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=2048), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt = '{instruction}{prediction}', ), ]), ), ), pred_role='BOT', ) flames_datasets.append( dict( abbr=f'{_name}', type=FlamesDataset, path=data_path, name=_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg ))