from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import (DS1000Dataset, ds1000_postprocess, ds1000_matplotlib_postprocess, DS1000Evaluator) ds1000_reader_cfg = dict( input_columns=['prompt'], output_column='test_column', train_split='test', test_split='test') ds1000_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='{prompt}', ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) ds1000_eval_cfg = dict( evaluator=dict(type=DS1000Evaluator), pred_role='BOT', pred_postprocessor=dict(type=ds1000_postprocess), ) # The DS-1000 dataset can be downloaded from # https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip ds1000_datasets = [ dict( abbr=f'ds1000_{lib}', type=DS1000Dataset, path='./data/ds1000_data/', libs=f'{lib}', reader_cfg=ds1000_reader_cfg, infer_cfg=ds1000_infer_cfg, eval_cfg=ds1000_eval_cfg, ) for lib in [ 'Pandas', 'Numpy', 'Tensorflow', 'Scipy', 'Sklearn', 'Pytorch', ] ] ds1000_datasets.append( dict( abbr='ds1000_Matplotlib', type=DS1000Dataset, path='./data/ds1000_data/', libs='Matplotlib', reader_cfg=ds1000_reader_cfg, infer_cfg=ds1000_infer_cfg, eval_cfg=dict( evaluator=dict(type=DS1000Evaluator), pred_role='BOT', pred_postprocessor=dict(type=ds1000_matplotlib_postprocess), ), ))