from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets.PMMEval import PMMEvalMLogiQADataset, PMMEvalMLogiQAEvaluator, pmmeval_mlogiqa_postprocess NATURAL_LANGUAGE_CODES = ['en', 'zh', 'ar', 'es', 'fr', 'ja', 'ko', 'pt', 'th', 'vi'] PMMEVAL_MLOGIQA_TEMPLATE = "Passage: {context}\nQuestion: {question}\nChoices:\nA.{option_1}\nB.{option_2}\nC.{option_3}\nD.{option_4}\nPlease choose the most suitable one among A, B, C and D as the answer to this question, and return it in the following JSON format:\n{'answer': '[choice]'}\nwhere [choice] must be one of A, B, C and D." PMMEval_MLogiQA_datasets = [] PMMEval_MLogiQA_reader_cfg = dict( input_columns=['context', 'question', 'option_1', 'option_2', 'option_3', 'option_4'], output_column='answer', train_split='test') PMMEval_MLogiQA_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt=PMMEVAL_MLOGIQA_TEMPLATE ) ] ) ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) for lang_code in NATURAL_LANGUAGE_CODES: PMMEval_MLogiQA_eval_cfg = dict( evaluator=dict(type=PMMEvalMLogiQAEvaluator), pred_role='BOT', pred_postprocessor=dict(type=pmmeval_mlogiqa_postprocess, lang_code=lang_code)) PMMEval_MLogiQA_datasets.append( dict( abbr=f'mlogiqa-{lang_code}', type=PMMEvalMLogiQADataset, path='P-MMEval', lang=lang_code, reader_cfg=PMMEval_MLogiQA_reader_cfg, infer_cfg=PMMEval_MLogiQA_infer_cfg, eval_cfg=PMMEval_MLogiQA_eval_cfg) )