from mmengine.config import read_base with read_base(): # from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets from .datasets.subjective.wildbench.wildbench_pair_judge import subjective_datasets from .models.openai.gpt_4 import models as gpt4_models from .models.hf_llama.hf_llama2_70b_chat import models as llama2_models # from .models.gemma.hf_gemma_2b_it import models # from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model # # from .models.hf_internlm.hf_internlm2_chat_7b import models # from .models.yi.hf_yi_1_5_34b_chat import models as yi_model # from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner from opencompass.runners import SlurmSequentialRunner from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask from opencompass.summarizers import WildBenchPairSummarizer from opencompass.models.claude_api.claude_api import Claude from opencompass.models import HuggingFacewithChatTemplate models = sum([v for k, v in locals().items() if k.endswith('_model')], []) api_meta_template = dict( round=[ dict(role='SYSTEM', api_role='SYSTEM'), dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ] ) # _meta_template = dict( # round=[ # dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'), # dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True), # ], # ) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models models = [ dict( type=HuggingFacewithChatTemplate, abbr='llama-3-8b-instruct-hf', path='meta-llama/Meta-Llama-3-8B-Instruct', max_out_len=4096, batch_size=8, run_cfg=dict(num_gpus=1), stop_words=['<|end_of_text|>', '<|eot_id|>'], ), dict( type=HuggingFacewithChatTemplate, abbr='yi-1.5-6b-chat-hf', path='01-ai/Yi-1.5-6B-Chat', max_out_len=4096, batch_size=8, run_cfg=dict(num_gpus=1), ), dict( type=HuggingFacewithChatTemplate, abbr='qwen1.5-7b-chat-hf', path='Qwen/Qwen1.5-7B-Chat', max_out_len=4096, batch_size=8, run_cfg=dict(num_gpus=1), ), # dict( # type=HuggingFacewithChatTemplate, # abbr='llama-3-70b-instruct-hf', # path='meta-llama/Meta-Llama-3-70B-Instruct', # max_out_len=4096, # batch_size=8, # run_cfg=dict(num_gpus=4), # stop_words=['<|end_of_text|>', '<|eot_id|>'], # ), # dict( # type=HuggingFacewithChatTemplate, # abbr='yi-1.5-34b-chat-hf', # path='01-ai/Yi-1.5-34B-Chat', # max_out_len=4096, # batch_size=8, # run_cfg=dict(num_gpus=2), # ), # dict( # type=HuggingFacewithChatTemplate, # abbr='qwen1.5-72b-chat-hf', # path='Qwen/Qwen1.5-72B-Chat', # max_out_len=4096, # batch_size=8, # run_cfg=dict(num_gpus=8), # ) ] datasets = [*subjective_datasets] # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [dict( abbr='GPT4-Turbo', type=OpenAI, path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613 key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=16, max_out_len=2048, max_seq_len=2048, batch_size=8, temperature=0, )] gpt4 = dict( abbr='gpt4-turbo', type=OpenAI, path='gpt-4-0409-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=4096, batch_size=4, retry=20, temperature=1, ) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions claude = dict(abbr='HaiKu', type=Claude, path='claude-2', key='YOUR_CLAUDE_KEY', query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=2, ) ## single evaluation # eval = dict( # partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models), # runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)), # ) infer = dict( partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'), runner=dict( type=SlurmSequentialRunner, max_num_workers=64, quotatype='reserved', partition='llmeval', task=dict(type=OpenICLInferTask)), ) eval = dict( partitioner=dict( type=SubjectiveNaivePartitioner, mode='m2n', # m个模型 与 n个模型进行对战 infer_order='random', # 在m2n模式下,需要指定base_models和compare_models,将会对base_models和compare_models生成对应的两两pair(去重且不会与自身进行比较) base_models = [*llama2_models, gpt4, claude], # 用于对比的基线模型 compare_models = models, # 待评测模型 judge_models=judge_models ), runner=dict( type=LocalRunner, # partition='llmeval', # quotatype='auto', max_num_workers=3, task=dict( type=SubjectiveEvalTask )), given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/WildBench/gpt4'}, {'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'}, {'abbr': 'HaiKu', 'path':'./data/WildBench/claude'}, {'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'}, {'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}] ) summarizer = dict(type=WildBenchPairSummarizer) work_dir = 'outputs/wildbench/'