from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets.PMMEval import PMMEvalMHellaswagDataset, PMMEvalMHellaswagEvaluator, pmmeval_mhellaswag_postprocess NATURAL_LANGUAGE_CODES = ['en', 'zh', 'ar', 'es', 'fr', 'ja', 'ko', 'pt', 'th', 'vi'] PMMEVAL_MHELLASWAG_TEMPLATE = "Input: {ctx}\nOptions: \nA. {option_1}\nB. {option_2}\nC. {option_3}\nD. {option_4}\nPick the correct ending for the sentence from A, B, C, and D, and return it in the following JSON format:\n{\"answer\": \"[choice]\"}\nwhere [choice] must be one of A, B, C or D." PMMEval_MHellaswag_datasets = list() PMMEval_MHellaswag_reader_cfg = dict( input_columns=['ctx', 'option_1', 'option_2', 'option_3', 'option_4'], output_column='label', test_split='test' ) PMMEval_MHellaswag_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict( role='HUMAN', prompt=PMMEVAL_MHELLASWAG_TEMPLATE ) ] ) ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) PMMEval_MHellaswag_datasets = list() for lang_code in NATURAL_LANGUAGE_CODES: PMMEval_MHellaswag_eval_cfg = dict( evaluator=dict(type=PMMEvalMHellaswagEvaluator), pred_role='BOT', pred_postprocessor=dict(type=pmmeval_mhellaswag_postprocess, lang_code=lang_code) ) PMMEval_MHellaswag_datasets.append( dict( abbr=f'mhellaswag-{lang_code}', type=PMMEvalMHellaswagDataset, path='P-MMEval', lang=lang_code, reader_cfg=PMMEval_MHellaswag_reader_cfg, infer_cfg=PMMEval_MHellaswag_infer_cfg, eval_cfg=PMMEval_MHellaswag_eval_cfg) )