import json import re from datasets import Dataset from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.utils import get_data_path from .base import BaseDataset def get_number(options): result_string = '' for i, option in enumerate(options, start=65): result_string += f'{chr(i)}. {option}\n' return result_string class KaoshiDataset(BaseDataset): @staticmethod def load(path: str, name: str): path = get_data_path(path, local_mode=True) data_list = [] with open(path, encoding='utf-8') as f: for line in f: data = json.loads(line) if name in ['single_choice', 'multi_choice']: data['question'] = data['question'].strip( ) + '\n' + get_number(data['options']) data_list.append(data) return Dataset.from_list(data_list) valid_kaoshi_question_types = [ 'single_choice', 'multi_choice', 'multi_question_choice', 'five_out_of_seven', 'cloze', 'judgment' ] class KaoshiEvaluator(BaseEvaluator): def __init__(self, question_type) -> None: super().__init__() assert question_type in valid_kaoshi_question_types self.question_type = question_type def do_predictions_postprocess(self, model_output, answer_lenth=None): if self.question_type == 'single_choice': model_answer = [] temp = re.findall(r'[A-D]', model_output[::-1]) if len(temp) != 0: model_answer.append(temp[0]) elif self.question_type == 'multi_question_choice': model_answer = [] temp = re.findall(r'【答案】\s*[::]*\s*[A-Z]', model_output) if len(temp) == answer_lenth: for t in temp: model_answer.append(re.findall(r'[A-Z]', t)[0]) else: temp = re.findall(r'[A-Z]', model_output) if len(temp) > 0: for k in range(min(len(temp), answer_lenth)): model_answer.append(temp[k]) elif self.question_type == 'multi_choice': model_answer = [] answer = '' content = re.sub(r'\s+', '', model_output) answer_index = content.find('【答案】') if answer_index > 0: temp = content[answer_index:] if len(re.findall(r'[A-D]', temp)) > 0: for t in re.findall(r'[A-D]', temp): answer += t else: temp = content[-10:] if len(re.findall(r'[A-D]', temp)) > 0: for t in re.findall(r'[A-D]', temp): answer += t if len(answer) != 0: model_answer.append(answer) elif self.question_type == 'five_out_of_seven': model_answer = [] temp = re.findall(r'[A-G]', model_output) if len(temp) > 0: for k in range(min(5, len(temp))): model_answer.append(temp[k]) elif self.question_type in ['cloze', 'judgment']: model_answer = [] temp = re.findall(r'【答案】(.*?) ', model_output) if len(temp) > 0: model_answer.append(temp[0]) return model_answer def ensure_same_length(self, pred, refr): if len(pred) == len(refr): return pred return ['Z'] * len(refr) def score(self, predictions, references): if self.question_type not in valid_kaoshi_question_types: return {'score': 100} elif self.question_type == 'multi_choice': correct_score, total_score = 0, 0 for pred, refr in zip(predictions, references): pred = self.do_predictions_postprocess(pred) pred = self.ensure_same_length(pred, refr) for p, r in zip(pred, refr): if p == r: correct_score += 2 else: for i in p: if i not in r: break else: correct_score += 1 total_score += 2 return {'score': correct_score / total_score * 100} else: correct_score, total_score = 0, 0 for pred, refr in zip(predictions, references): if self.question_type == 'multi_question_choice': pred = self.do_predictions_postprocess(pred, len(refr)) else: pred = self.do_predictions_postprocess(pred) if self.question_type in ['cloze', 'judgment']: refr = [refr] pred = self.ensure_same_length(pred, refr) for p, r in zip(pred, refr): if p == r: correct_score += 1 total_score += 1 return {'score': correct_score / total_score * 100}