from mmengine.config import read_base from opencompass.models.turbomind import TurboMindModel with read_base(): # choose a list of datasets from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets # from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets # from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets # from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets # from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets # from .datasets.race.race_gen_69ee4f import race_datasets # from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets # and output the results in a choosen format from .summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) internlm_meta_template = dict(round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) llama2_meta_template = dict( round=[ dict(role='HUMAN', begin='[INST] ', end=' [/INST]'), dict(role='BOT', generate=True), ], eos_token_id=2) qwen_meta_template = dict(round=[ dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'), dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True) ]) baichuan2_meta_template = dict(round=[ dict(role='HUMAN', begin=''), dict(role='BOT', begin='', generate=True) ]) # config for internlm-chat-7b internlm_chat_7b = dict( type=TurboMindModel, abbr='internlm-chat-7b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) internlm_chat_7b_w4 = dict( type=TurboMindModel, abbr='internlm-chat-7b-w4-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for internlm-chat-7b-w4kv8 model internlm_chat_7b_w4kv8 = dict( type=TurboMindModel, abbr='internlm-chat-7b-w4kv8-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=32, concurrency=32, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for internlm-chat-20b internlm_chat_20b = dict( type=TurboMindModel, abbr='internlm-chat-20b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for internlm-chat-20b-w4 model internlm_chat_20b_w4 = dict( type=TurboMindModel, abbr='internlm-chat-20b-w4-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=16, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for internlm-chat-20b-w4kv8 model internlm_chat_20b_w4kv8 = dict( type=TurboMindModel, abbr='internlm-chat-20b-w4kv8-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=16, meta_template=internlm_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for llama2-chat-7b llama2_chat_7b = dict( type=TurboMindModel, abbr='llama2-chat-7b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=32, meta_template=llama2_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for llama2-chat-13b llama2_chat_13b = dict( type=TurboMindModel, abbr='llama2-chat-13b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=16, meta_template=llama2_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for llama2-chat-70b llama2_chat_70b = dict( type=TurboMindModel, abbr='llama2-chat-70b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=8, concurrency=8, meta_template=llama2_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for qwen-chat-7b qwen_chat_7b = dict( type=TurboMindModel, abbr='qwen-chat-7b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=32, meta_template=qwen_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for qwen-chat-7b qwen_chat_14b = dict( type=TurboMindModel, abbr='qwen-chat-14b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=32, meta_template=qwen_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) # config for baichuan2-chat-7b baichuan2_chat_7b = dict( type=TurboMindModel, abbr='baichuan2-chat-7b-turbomind', path='./turbomind', max_out_len=100, max_seq_len=2048, batch_size=16, concurrency=32, meta_template=baichuan2_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), ) models = [internlm_chat_20b]