from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Union from opencompass.utils.prompt import PromptList from .base_api import BaseAPIModel try: from volcenginesdkarkruntime import Ark except ImportError: Ark = None PromptType = Union[PromptList, str] class Doubao(BaseAPIModel): """Model wrapper around Doubao. Documentation: https://www.volcengine.com/docs/82379/1263482 Args: path (str): The name of Doubao model. e.g. `Doubao` accesskey (str): The access key secretkey (str): secretkey in order to obtain access_token query_per_second (int): The maximum queries allowed per second between two consecutive calls of the API. Defaults to 1. max_seq_len (int): Unused here. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. retry (int): Number of retires if the API call fails. Defaults to 2. """ is_api: bool = True def __init__(self, path: str, accesskey: str, secretkey: str, query_per_second: int = 2, max_seq_len: int = 2048, meta_template: Optional[Dict] = None, retry: int = 2, generation_kwargs: Dict = { 'temperature': 0.7, 'top_p': 0.9, }): super().__init__(path=path, max_seq_len=max_seq_len, query_per_second=query_per_second, meta_template=meta_template, retry=retry, generation_kwargs=generation_kwargs) if not Ark: print('Please install related packages via' ' `pip install \'volcengine-python-sdk[ark]\'`') self.accesskey = accesskey self.secretkey = secretkey self.model = path def generate( self, inputs: List[PromptType], max_out_len: int = 512, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[PromptType]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: List[str]: A list of generated strings. """ with ThreadPoolExecutor() as executor: results = list( executor.map(self._generate, inputs, [max_out_len] * len(inputs))) self.flush() return results def _generate( self, input: PromptType, max_out_len: int = 512, ) -> str: """Generate results given an input. Args: input (PromptType): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: str: The generated string. messages [ { "role": "user", "content": "天为什么这么蓝?" }, { "role": "assistant", "content": "因为有你" }, { "role": "user", "content": "花儿为什么这么香?" }, ] """ assert isinstance(input, (str, PromptList)) if isinstance(input, str): messages = [{'role': 'user', 'content': input}] else: messages = [] for item in input: msg = {'content': item['prompt']} if item['role'] == 'HUMAN': msg['role'] = 'user' elif item['role'] == 'BOT': msg['role'] = 'assistant' messages.append(msg) client = Ark(ak=self.accesskey, sk=self.secretkey) req = { 'model': self.path, 'messages': messages, } req.update(self.generation_kwargs) def _chat(client, req): try: completion = client.chat.completions.create(**req) return completion.choices[0].message.content except Exception as e: print(e) return e max_num_retries = 0 while max_num_retries < self.retry: self.acquire() response = _chat(client, req) self.release() if response is None: print('Connection error, reconnect.') # if connect error, frequent requests will casuse # continuous unstable network, therefore wait here # to slow down the request self.wait() continue if isinstance(response, str): print(response) return response max_num_retries += 1 raise RuntimeError(response)