# flake8: noqa: E501 base_prompt_dict = { 'basic': """Input Info: %s Question: %s Answer (Yes or No ?):""", 'basic-CN': """输入信息:%s 问题:%s 答案(是或否?):""", 'adversarial-ignore': """Input Info: %s Question: %s Answer (Yes or No ?):""", 'adversarial-ignore-CN': """输入信息:%s 问题:%s 答案(是或否?):""", 'adversarial-doubt': """Input Info: %s Question: %s Answer (Yes or No ?):""", 'adversarial-doubt-CN': """输入信息:%s 问题:%s 答案(是或否?):""", 'zero-shot-IcL': """Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events. Input Info: %s Question: %s Answer (Yes or No ?):""", 'zero-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。 输入信息:%s 问题:%s 答案(是或否?):""", 'one-shot-IcL': """Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events. Input Info: Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general. Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): no Input Info: %s Question: %s Answer (Yes or No ?):""", 'one-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。 输入信息:方法1:根据妻子的情况,我们逐个研究丈夫与闹钟之间的关联;方法2:我们直接研究一般情况下丈夫与闹钟之间的关联。 问题:要了解丈夫如何影响闹钟,使用方法1比方法2更准确吗? 答案(是或否?):否 输入信息:%s 问题:%s 答案(是或否?):""", 'three-shot-IcL': """Answer questions by considering what constitutes a valid adjustment set that can block all backdoor spurious correlations between two events. Input Info: Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general. Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): no Input Info: Method 1: We look directly at how husband correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife. Question: To understand how husband affects alarm clock, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): yes Input Info: Method 1: We look directly at how the man in the room correlates with room in general. Method 2: We look at this correlation case by case according to the candle. Question: To understand how the man in the room affects room, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): yes Input Info: %s Question: %s Answer (Yes or No ?):""", 'three-shot-IcL-CN': """通过考虑什么构成一个有效的调整集,以阻断两个事件之间所有后门伪相关,来回答问题。 输入信息:方法1:根据妻子的情况,我们逐个研究丈夫与闹钟之间的关联;方法2:我们直接研究一般情况下丈夫与闹钟之间的关联。 问题:要了解丈夫如何影响闹钟,使用方法1比方法2更准确吗? 答案(是或否?):否 输入信息:方法1:我们直接研究一般情况下丈夫与闹钟之间的关联。方法2:根据妻子的情况,我们逐个研究这种关联。 问题:要了解丈夫如何影响闹钟,使用方法1比方法2更准确吗? 答案(是或否?):是 输入信息:方法1: 我们直接研究一般情况下房间里的男人与房间之间的关联;方法2:根据蜡烛,我们逐个研究这种关联。 问题:要了解房间里的男子如何影响房间,使用方法1比方法2更准确吗? 答案(是或否?):是 输入信息:%s 问题:%s 答案(是或否?):""", 'zero-shot-CoT': """Input Info: %s Question: %s Let's think step by step. Answer (Yes or No ?):""", 'zero-shot-CoT-CN': """输入信息:%s 问题:%s请逐步思考。 答案(是或否?):""", 'manual-CoT': """Here are three examples for problems about considering backdoor adjustment set with chain of thought. Input Info: Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp. Question: To understand how jyka affects lirg, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): Since gyzp is a confounder, both affects jyka and lirg, looking directly at the relation between jyka and lirg like Method 1 is not correct. Therefore, the answer is No. Input Info: Method 1: We look directly at how encouragement level correlates with brown eyes in general. Method 2: We look at this correlation case by case according to studying habit. Question: To understand how encouragement level affects brown eyes, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): Since studying habit is a result of encouragement level, there is no need to consider studying habit when studying the relation between encouragement level and brown eyes. Therefore, the answer is Yes. Input Info: Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory. Question: To understand how zuph affects glimx, is it more correct to use the Method 1 than Method 2? Answer (Yes or No ?): Since zory is a confounder, both affects zuph and glimx, looking at the correlation without considering zory is not correct. Therefore, the answer is No. Input Info: %s Question: %s Answer (Yes or No ?):""", 'manual-CoT-CN': """如下为三个使用思维链进行推理的有关后门变量集合的问题: 输入信息:方法1: 我们直接研究一般情况下房间里的男人与房间之间的关联;方法2:根据蜡烛,我们逐个研究这种关联。 问题:要了解房间里的男子如何影响房间,使用方法1比方法2更准确吗? 答案(是或否?):因为房间里的男人和蜡烛对房间的影响是相互独立的,所以蜡烛不会影响房间里的男人和房间之间的关联。因此方法1更好。因此答案为“是”。 输入信息:方法1:我们直接研究一般情况下jyka与lirg之间的关联。方法2:根据gyzp,我们逐个研究这种关联。 问题:要了解gyzp如何影响lirg,使用方法1比方法2更准确吗? 答案(是或否?):因为gyzp作为混淆变量会同时影响jyka和lirg,使用方法1会导致对jyka和lirg之间的关联产生错误判断。因此答案为“否”。 输入信息:方法1:我们直接研究一般情况下鼓励程度与考试成绩之间的关联。方法2:根据学习习惯,我们逐个研究这种关联。 问题:要了解鼓励程度如何影响考试成绩,使用方法1比方法2更准确吗? 答案(是或否?):因为学习成绩是鼓励程度的结果,不会影响鼓励程度和考试成绩之间的关联。因此方法1更好。因此答案为“是”。 输入信息:%s 问题:%s 答案(是或否?)""", 'explicit-function': """You are a helpful assistant for backdoor adjustment set. Input Info: %s Question: %s Answer (Yes or No ?):""", 'explicit-function-CN': """你是一个用于后门调节的得力助手。 输入信息:%s 问题:%s 答案(是或否?):""", } def get_prompt(task_name, prompt_style, item, prompt_style_str=''): base = base_prompt_dict[prompt_style] prompt = prompt_style_str + base % (item['given_info'], item['question']) return prompt